References

  1. Z. Zhou, M. Benbouzid, J. Frédéric Charpentier, F. Scuiller, T. Tang, A review of energy storage technologies for marine current energy systems, Renewable Sustainable Energy Rev., 18 (2013) 390–400.
  2. B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature, 488 (2012) 313–319.
  3. Z. Jia, B. Wang, S. Song, Y. Fan, Blue energy: current technologies for sustainable power generation from water salinity gradient, Renewable Sustainable Energy Rev., 31 (2014) 91–100.
  4. F. Helfer, C. Lemckert, The power of salinity gradients: an Australian example, Renewable Sustainable Energy Rev., 50 (2015) 1–16.
  5. Z. Jalili, K.W. Krakhella, K.E. Einarsrud, O.S. Burheim, Energy generation and storage by salinity gradient power: a modelbased assessment, J. Energy Storage, 24 (2019) 100755.
  6. C. Seyfried, H. Palko, L. Dubbs, Potential local environmental impacts of salinity gradient energy: a review, Renewable Sustainable Energy Rev., 102 (2019) 111–120.
  7. N.Y. Yip, M. Elimelech, Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis, Environ. Sci. Technol., 46 (2012) 5230–5239.
  8. R.A. Tufa, E. Curcio, W. van Baak, J. Veerman, S. Grasman, E. Fontananova, G. Di Profio, Potential of brackish water and brine for energy generation by salinity gradient power-reverse electrodialysis (SGP-RE), RSC Adv., 4 (2014) 42617–42623.
  9. Y. Chen, A.A. Alanezi, J. Zhou, A. Altaee, M.H. Shaheed, Optimization of module pressure retarded osmosis membrane for maximum energy extraction, J. Water Process Eng., 32 (2019) 100935.
  10. A. Altaee, A. Cippolina, Modeling, and optimization of a modular system for power generation from a salinity gradient, Renewable Energy, 141 (2019) 139–147.
  11. S. Lee, J. Choi, Y.-G. Park, H. Shon, C.H. Ahn, S.-H. Kim, Hybrid desalination processes for beneficial use of reverse osmosis brine: current status and future prospects, Desalination, 454 (2019) 104–111.
  12. M. Tedesco, A. Cipollina, A. Tamburini, G. Micale, Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines, J. Membr. Sci., 522 (2017) 226–236.
  13. J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant, Environ. Sci. Technol., 44 (2010) 9207–9212.
  14. J. Veerman, M. Saakes, S. Metz, G. Harmsen, Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water, J. Membr. Sci., 327 (2009) 136–144.
  15. R. Pattle, Production of electric power by mixing fresh and saltwater in the hydroelectric pile, Nature, 174 (1954) 660–660.
  16. G. Wick, Prospects for renewable energy from sea, Mar. Technol. Soc. J., 11 (1977) 16–21.
  17. J.N. Weinstein, F.B. Leitz, Electric power from differences in salinity: the dialytic battery, Science, 191 (1976) 557–559.
  18. E. Fontananova, D. Messana, R. Tufa, I. Nicotera, V. Kosma, E. Curcio, W. van Baak, E. Drioli, G. Di Profio, Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion, J. Power Sources, 340 (2017) 282–293.
  19. M. Tedesco, C. Scalici, D. Vaccari, A. Cipollina, A. Tamburini, G. Micale, Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines, J. Membr. Sci., 500 (2016) 33–45.
  20. J. Veerman, M. Saakes, S.J. Metz, G. Harmsen, Reverse electrodialysis: evaluation of suitable electrode systems, J. Appl. Electrochem., 40 (2010) 1461–1474.
  21. J. Veerman, J. Post, M. Saakes, S. Metz, G. Harmsen, Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model, J. Membr. Sci., 310 (2008) 418–430.
  22. J.G. Hong, T.-W. Park, Y. Dhadake, Property evaluation of custom-made ion exchange membranes for electrochemical performance in reverse electrodialysis application, J. Electroanal. Chem., 850 (2019) 113437.
  23. J. Veerman, M. Saakes, S. Metz, G. Harmsen, Reverse electrodialysis: a validated process model for design and optimization, Chem. Eng. J., 166 (2011) 256–268.
  24. L. Gurreri, G. Battaglia, A. Tamburini, A. Cipollina, G. Micale, M. Ciofalo, Multi-physical modeling of reverse electrodialysis, Desalination, 423 (2017) 52–64.
  25. M. Tedesco, E. Brauns, A. Cipollina, G. Micale, P. Modica, G. Russo, J. Helsen, Reverse electrodialysis with saline waters and concentrated brines: a laboratory investigation towards technology scale-up, J. Membr. Sci., 492 (2015) 9–20.
  26. Y. Mei, C.Y. Tang, Recent developments and future perspectives of reverse electrodialysis technology: a review, Desalination, 425 (2018) 156–174.
  27. D.A. Vermaas, M. Saakes, K. Nijmeijer, Doubled power density from salinity gradients at reduced intermembrane distance, Environ. Sci. Technol., 45 (2011) 7089–7095.
  28. J.G. Hong, W. Zhang, J. Luo, Y. Chen, Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: the effect of monovalent and multivalent ions, Appl. Energy, 110 (2013) 244–251.
  29. M. Tedesco, H. Hamelers, P. Biesheuvel, Nernst–Planck transport theory for (reverse) electrodialysis: I. effect of co-ion transport through the membranes, J. Membr. Sci., 510 (2016) 370–381.
  30. P. Długołęcki, J. Dąbrowska, K. Nijmeijer, M. Wessling, Ion conductive spacers for increased power generation in reverse electrodialysis, J. Membr. Sci., 347 (2010) 101–107.
  31. J.-Y. Nam, K.-S. Hwang, H.-C. Kim, H. Jeong, H. Kim, E. Jwa, S. Yang, J. Choi, C.-S. Kim, J.-H. Han, Assessing the behavior of the feed-water constituents of a pilot-scale 1,000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent, Water Res., 148 (2019) 261–271.
  32. A. D’Angelo, M. Tedesco, A. Cipollina, A. Galia, G. Micale, O. Scialdone, Reverse electrodialysis performed at pilot plant scale: evaluation of redox processes and simultaneous generation of electric energy and treatment of wastewater, Water Res., 125 (2017) 123–131.
  33. R. Ortiz-Imedio, L. Gomez-Coma, M. Fallanza, A. Ortiz, R. Ibañez, I. Ortiz, Comparative performance of salinity gradient power-reverse electrodialysis under different operating conditions, Desalination, 457 (2019) 8–21.
  34. R.A. Tufa, E. Curcio, E. Brauns, W. van Baak, E. Fontananova, G. Di Profio, Membrane distillation and reverse electrodialysis for near-zero liquid discharge and low energy seawater desalination, J. Membr. Sci., 496 (2015) 325–333.
  35. P. Długołe􀉔cki, A. Gambier, K. Nijmeijer, M. Wessling, Practical potential of reverse electrodialysis as process for sustainable energy generation, Environ. Sci. Technol., 43 (2009) 6888–6894.
  36. M. Tedesco, A. Cipollina, A. Tamburini, I.D.L. Bogle, G. Micale, A simulation tool for analysis and design of reverse electrodialysis using concentrated brines, Chem. Eng. Res. Des., 93 (2015) 441–456.
  37. D.A. Vermaas, E. Guler, M. Saakes, K. Nijmeijer, Theoretical power density from salinity gradients using reverse electrodialysis, Energy Procedia, 20 (2012) 170–184.
  38. D.A. Vermaas, M. Saakes, K. Nijmeijer, Power generation using profiled membranes in reverse electrodialysis, J. Membr. Sci., 385–386 (2011) 234–242.
  39. S. Yang, W.-S. Kim, J. Choi, Y.-W. Choi, N. Jeong, H. Kim, J.-Y. Nam, H. Jeong, Y.H. Kim, Fabrication of photocured anion-exchange membranes using water-soluble siloxane resins as cross-linking agents and their application in reverse electrodialysis, J. Membr. Sci., 573 (2019) 544–553.
  40. F. Giacalone, F. Vassallo, L. Griffin, M. Ferrari, G. Micale, F. Scargiali, A. Tamburini, A. Cipollina, Thermolytic reverse electrodialysis heat engine: model development, integration and performance analysis, Energy Convers. Manage., 189 (2019) 1–13.