References
- H.C. Poynton, W.E. Robinson, Contaminants of Emerging
Concern, with an Emphasis on Nanomaterials and Pharmaceuticals,
B. Torok, T. Dransfield, Eds., Green Chemistry:
An Inclusive Approach, Elsevier, Cambridge, MA, 3 (2018)
291–315.
- G. Latini, C. Felice, G. Presta, A. Del Vecchio, I. Paris,
F. Ruggieri, P. Mazzeo, Exposure to di(2-ethylhexyl)phthalate
in humans during pregnancy: a preliminary report, Biol. Neonate,
83 (2003) 22–24.
- S.B. Abdelmelek, J. Greaves, K.P. Ishida, W.J. Cooper, W. Song,
Removal of pharmaceutical and personal care products from
reverse osmosis retentate using advanced oxidation processes,
Environ. Sci. Technol., 45 (2011) 3665–71.
- A.P. Wezel, P. Van Vlaardinger, R. Posthumus, G.H. Crommentuijin,
D.T.H.M. Sijim, Environmental risk limits for two
phthalates, with special emphasis on endocrine disruptive
properties, Ecotoxicol. Environ. Saf., 46 (2000) 305–321.
- K.M. Gani, A.A. Kazmi, Phthalate contamination in aquatic
environment: a critical review of the process factors that
influence their removal in conventional and advanced wastewater
treatment, Crit. Rev. Environ. Sci. Technol., 46 (2016)
1402–1439.
- I. Ipek, N. Kabay, M. Yuksel, Separation of bisphenol A and
phenol from water by polymer adsorbents: equilibrium and
kinetics studies, J. Water Process Eng., 16 (2017) 206–211.
- D.J. Lapworth, N. Baran, M.E. Stuart, R.S. Ward, Emerging
organic contaminants in groundwater: a review of sources, fate,
and occurrence, Environ. Pollut., 163 (2012) 287–303.
- U.S. Environmental Protection Agency, Toxicological Review of
Phenol, EPA/635/R-02/006, Washington DC, 2002. Available at:
https://permanent.access.gpo.gov/lps94094/0088-tr.pdf.
- H.F. Stoeckli, M.V. Lopez-Ramon, D. Hugi-Cleary, A. Guillot,
Micropore sizes in activated carbons determined from Dubinin–
Radushkevich equation, Carbon, 39 (2001) 1115–1116.
- H.P. Boehm, Surface oxides on carbon and their analysis:
a critical assessment, Carbon, 40 (2002) 145–149.
- J. Rivera-Utrilla, M. Sánchez-Polo, Ozonation of 1,3,6-
naphthalenetrisulfonic acid catalysed by activated carbon in
aqueous phase, Appl. Catal., B, 39 (2002) 319–329.
- O.S. Keen, A.D. Dotson, K.G. Linden, Evaluation of hydrogen
peroxide chemical quenching agents following an advanced
oxidation process, J. Environ. Eng., 139 (2013) 137–140.
- T.F. Oliveira, O. Chedeville, H. Fauduet, B. Cagnon, Use of
ozone/activated carbon coupling to remove diethyl phthalate
from water: influence of activated carbon textural and chemical
properties, Desalination, 276 (2011) 359–365.
- D.L. Pavia, G.M. Lampman, G.S. Kriz, Introduction to Spectroscopy,
3rd ed., Thomson Learning, Inc., Belmont, USA, 2001.
- O. Aktas, F. Çeçen, Adsorption, desorption and bioregeneration
in the treatment of 2-chlorophenol with activated carbon,
J. Hazard. Mater., 141 (2007) 769–777.
- K.J. Choi, S.G. Kim, C.W. Kim, S.H. Kim, Effects of activated
carbon types and service life on removal of endocrinedisrupting
chemicals: amitrol, nonylphenol, and bisphenol-A,
Chemosphere, 58 (2005) 1535–1545.
- H. Park, J.R. Koduru, K. Choo, B. Lee, Activated carbons
impregnated with iron oxide nanoparticles for enhanced
removal of bisphenol A and natural organic matter, J. Hazard.
Mater., 286 (2015) 315–324.
- D.S. Chaudhary, S. Vigneswaran, V. Jegatheesan, H.H. Ngo,
H. Moon, Granular activated carbon (GAC) adsorption in
tertiary wastewater treatment: experiments and models, Water
Sci. Technol., 47 (2003) 113–120.
- J. Fu, Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang, R. Han,
Q. Xu, Adsorption of methylene blue by a high-efficiency
adsorbent (polydopamine microspheres): kinetics, isotherm,
thermodynamics and mechanism analysis, Chem. Eng. J.,
259 (2015) 53–61.
- V.V.S. Guilarduci, J.P. Mesquita, P.B. Martelli, H.F. Gorgulho,
Adsorção de fenol sobre carvão ativado em meio alcalino,
Quím. Nova, 29 (2006) 1226–1232.
- C.S. Barbosa, S.A.A. Santana, C.W.B. Bezerra, H.A.S.S. Silva,
Remoção de compostos fenólicos de soluções aquosas utilizando
carvão ativado preparado a partir do aguapé (Eichhornia
crassipes): estudo cinético e de equilíbrio termodinâmico, Quím.
Nova, 37 (2014) 447–453.
- B. Cagnon, S. Chatelain, T.F. Oliveira, F. Versaveau, S. Delpeux,
O. Chedeville, Adsorption of phthalates on activated carbons
in monosolute solution and in mix within complex matrices,
Water Air Soil Pollut., 228 (2017) 144–453.
- Y. Xiao, R. Fan, L. Zhang, J. Yue, R.D. Webster, T.T. Lim,
Photodegradation of iodinated trihalomethanes in aqueous
solution by UV 254 irradiation, Water Res., 49 (2014) 275–285.
- Y. Xiao, L. Zhang, J. Yue, R.D. Webster, T.T. Lim, Kinetic
modeling and energy efficiency of UV/H₂O₂ treatment of
iodinated trihalomethanes, Water Res., 75 (2015) 259–269.
- Y. Zhang, Y. Xiao, J. Zhang, V.W.C. Chang, T.T. Lim, Direct and
indirect photodegradation pathways of cytostatic drugs under
UV germicidal irradiation: process kinetics and influences
of water matrix species and oxidant dosing, J. Hazard. Mater.,
324 (2017) 481–488.
- Y. Zhang, Y. Xiao, J. Zhang, V.W.C. Chang, T.T. Lim Degradation
of cyclophosphamide and 5-fluorouracil in water using UV
and UV/H2O2: kinetics investigation, pathways and energetic
analysis, J. Environ. Chem. Eng., 5 (2017) 1133–1139.
- Y. Zhang, Y. Xiao, Y. Zhong, T.T. Lima, Comparison of amoxicillin
photodegradation in the UV/H2O2 and UV/persulfate systems:
reaction kinetics, degradation pathways, and antibacterial
activity, Chem. Eng. J., 372 (2019) 420–428.
- B. Mondal, A. Adak, P. Datta, Effect of operating conditions
and interfering substances on photochemical degradation of a
cationic surfactant, Environ. Technol., 39 (2018) 2771–2780.
- A. Adak, K.P. Mamgalgiri, J. Lee, L. Blaney, UV irradiation and
UV-H₂O₂ advanced oxidation of the roxarsone and nitarsone
organoarsenicals, Water Res., 70 (2014) 74–85.
- B. Mondal, K. Hait, A. Adaka, P. Datt, Effect of operating conditions
and interfering substances on photochemical degradation
of a cationic surfactant, J. Indian Chem. Soc., 95 (2018) 331–338.
- B. Mondal, A. Adaka, P. Datt, Degradation of anionic surfactant
in municipal wastewater by UV-H2O2: process optimization
using response surface methodology, J. Photochem. Photobiol.,
A, 375 (2019) 237–243.
- Y. Lee, U.V. Gunten, Oxidative transformation of micropollutant
and during municipal wastewater treatment: comparison of
kinetic aspects of selective (chlorine, chlorine dioxide, ferrate
VI, and ozone) and non-selective oxidants (hydroxyl radical),
Water Res., 44 (2010) 555–566.
- B. Xu, N.Y. Gao, X.F. Sun, X. Sheng-Ji, R. Min, M.O. Simonnot,
C. Causserand, J.F. Zhao, Photochemical degradation of diethyl
phthalate with UV/H2O2, J. Hazard. Mater., 139 (2007) 132–139.
- N.A. Medellin-Castillo, R. Ocampo-Pérez, R. Leyva-Ramos, M.
Sanchez-Polo, J. Rivera-Utrilla, J.D. Méndez-Díaz, Removal of
diethyl phthalate from water solution by adsorption, photooxidation,
ozonation and advanced oxidation process (UV/H2O2, O3/H2O2, and O3/activated carbon), Sci Total Environ.,
142 (2013) 25–35.
- G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical
review of rate constants for reactions of hydrated electrons,
hydrogen atoms and hydroxyl radicals (•OH/O–) in aqueous
solution, J. Phys. Chem., 17 (1988) 513.
- J. Rivera-Utrilla, J. Méndez-Díaz, M. Sánchez-Polo, M.A. Ferro-García, I. Bautista-Toledo, Removal of the surfactant sodium
dodecylbenzenesulfonate from waster by simultaneous use
of ozone and powdered activated carbon: comparison with
systems based on O3 and O3/H2O2, Water Res., 40 (2006)
1717–1725.
- M.F. Moraes, T.F. Oliveira, J. Cuellar, G.L. Castiglioni, Phenol
degradation using adsorption methods, advanced oxidative
process (H2O2/UV) and H2O2/UV/activated carbon coupling:
influence of homogeneous and heterogeneous phase, Desal.
Water Treat., 100 (2017) 38–45.
- H. Valdés, A.C. Zaror, Heterogeneous and homogeneous
catalytic ozonation of benzothiazole by activated carbon: kinetic
approach, Chemosphere, 65 (2006) 1131–1136.
- M. Sánchez-Polo, R. Leyva-Ramos, J. Rivera-Utrilla, Kinetics
of 1,3,6-naphthalene-tri sulfonic acid ozonation in presence
of activated carbon, Carbon, 43 (2005) 962–969.
- A. Flouret, M.C. Almeida, T.F. Oliveira, F.P. Sá, Advanced
treatment of phenol by H2O2/UV/activated carbon coupling:
influence of homogeneous and heterogeneous phase, Can.
J. Chem. Eng., 96 (2018) 1979–1985.
- L. Dąbek, E. Ozimina, A. Picheta-Oleś, Dye removal efficiency
of virgin activated carbon and activated carbon regenerated
with Fenton’s reagent, Environ. Prot. Eng., 38 (2012) 5–13.
- L. Dąbek, E. Ozimina, A. Picheta-Oleś, Assessing the influence
of the presence of heavy metals adsorbed on activated carbon on
the efficiency of degradation of phenol using selected oxidizing
agents, Ecol. Chem. Eng. S, 19 (2012) 249–257.
- T.F. Oliveira, B. Cagnon, O. Chedeville, H. Fauduet, Removal of
a mix of endocrine disrupter from different natural matrices by
ozone/activated carbon coupling process, Desal. Water Treat.,
52 (2014) 4395–4403.
- P.C.C. Faria, M.F.R. Fereira, J.J.M. Orfão, Ozone decomposition
in water catalyzed by activated carbon: influence of chemical
and textural properties, Ind. Eng. Chem. Res., 45 (2006)
2715–2721.
- T.F. Oliveira, B. Cagnon, O. Chedeville, H. Fauduet,
Traitement d’un effluent contenant du diéthylphtalate par le
couplage ozone/charbon actif: Évolution de la toxicité et de la
minéralization, in Récents Progrès en Génie des Procédés, Proc.
13ème congrés de la Société Françaíse de Génie des Procédés,
ed., SFGP, Lille, France, 2011, p. 101.