References

  1. G. Wang, T. Xiang, Y. Zheng, Analysis on water pollution control technology in the viscose fibre business, Arid Environ. Monit., 21 (2007) 176–180.
  2. H. Liu, B. Pang, J. Zhou, Y. Han, J. Lu, H. Li, H. Wang, Comparative study of pretreated corn stover for sugar production using cotton pulping black liquor (CPBL) instead of sodium hydroxide, Ind. Crops Prod., 84 (2016) 97–103.
  3. M.N. De Almeida, D.L. Falkoski, V.M. Guimarães, S.T. De Rezende, Study of gamba grass as carbon source for cellulase production by Fusarium verticillioides and its application on sugarcane bagasse saccharification, Ind. Crops Prod., 133 (2019) 33–43.
  4. S. Zu, W.Z. Li, M. Zhang, Z. Li, Z. Wang, H. Jameel, H.M. Chang, Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime, Bioresour. Technol., 152 (2014) 364–370.
  5. P. Cui, X. Zhou, Y. Zhang, The feasibility study of cotton pulp wastewater treatment with IC anaerobic reactor, Procedia Environ. Sci., 11 (2011) 686–692.
  6. L. Liu, Y. Hu, P. Wen, N. Li, M. Zong, B. Ou-Yang, H. Wu, Evaluating the effects of biocompatible cholinium ionic liquids on microbial lipid production by Trichosporon fermentans, Biotechnol. Biofuels, 8 (2015) 119.
  7. N.S. Naghavi, G. Emtiazi, N. Karimian, Partial purification and immobilization of cellulase enzymes from the fungus Aspergillus terreus isolated from rotten wood, J. Life Sci. Technol., 1 (2013) 7–9.
  8. R. Saini, J.K. Saini, M. Adsul, A.K. Patel, A. Mathur, D. Tuli, R.R. Singhania, Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application, Bioresour. Technol., 188 (2015) 240–246.
  9. F.M. Medie, G.J. Davies, M. Drancourt, B. Henrissat, Genome analyses highlight the different biological roles of cellulases, Nat. Rev. Microbiol., 10 (2012) 227.
  10. H. Watanabe, G. Tokuda, Cellulolytic systems in insects, Annu. Rev. Entomol., 55 (2010) 609–632.
  11. M. Gatti, F. García-Usach, A. Seco, J. Ferrer, Wastewater COD characterization: analysis of respirometric and physicalchemical methods for determining biodegradable organic matter fractions, J. Chem. Technol. Biotechnol., 85 (2010) 536–544.
  12. H. He, Y. Chen, X. Li, Y. Cheng, C. Yang, G. Zeng, Influence of salinity on microorganisms in activated sludge processes: a review, Int. Biodeterior. Biodegrad., 119 (2017) 520–527.
  13. E.H. Seck, A. Diop, N. Armstrong, J. Delerce, P.E. Fournier, D. Raoult, S. Khelaifia, Microbial culturomics to isolate halophilic bacteria from table salt: genome sequence and description of the moderately halophilic bacterium Bacillus salis sp. nov, New Microbes New Infect., 23 (2018) 28–38.
  14. J.H. Hong, S. Jang, Y.M. Heo, M. Min, H. Lee, Y.M. Lee, H. Lee, J.J. Kim, Investigation of marine-derived fungal diversity and their exploitable biological activities, Mar. Drugs, 13 (2015) 4137–4155.
  15. A.A. Gunny, D. Arbain, P. Jamal, R.E. Gumba, Improvement of halophilic cellulase production from locally isolated fungal strain, Saudi J. Biol. Sci., 22 (2015) 476–483.
  16. N. Trivedi, C.R.K. Reddy, R. Radulovich, B. Jha, Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production, Algal Res., 9 (2015) 48–54.
  17. W.K. Hegazy, M.S. Abdel-Salam, A.A. Hussain, H.H. Abo- Ghalia, S.S. Hafez, Improvement of cellulose degradation by cloning of endo-beta-1,3–1,4 glucanase (bgls) gene from Bacillus subtilis BTN7A strain, J. Genet. Eng. Biotechnol., 16 (2018) 281–285.
  18. A. Augustine, I. Joseph, Four novel strains of cellulolytic symbiotic bacteria isolated and characterized from GI tract of marine fishes of various feeding habits, Biocatal. Agric. Biotechnol., 16 (2018) 706–714.
  19. N. Libardi, C.R. Soccol, J.C. De Carvalho, L.P. De Souza Vandenberghe, Simultaneous cellulase production using domestic wastewater and bioprocess effluent treatment - a biorefinery approach, Bioresour. Technol., 276 (2019) 42–50.
  20. S. Sarsaiya, S.K. Awasthi, M.K. Awasthi, A.K. Awasthi, S. Mishra, J. Chen, The dynamic of cellulase activity of fungi inhabiting organic municipal solid waste, Bioresour. Technol., 251 (2018) 411–415.
  21. K. Apun, B.C. Jong, M.A. Salleh, Screening and isolation of a cellulolytic and amylolytic Bacillus from sago pith waste, J. Gen. Appl. Microbiol., 46 (2000) 263–267.
  22. D.E. Eveleigh, M. Mandels, R. Andreotti, C. Roche, Measurement of saccharifying cellulase, Biotechnol. Biofuels, 2 (2009) 1–8.
  23. G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Biochem., 31 (1959) 426–428.
  24. L.R. Lynd, P.J. Weimer, W.H. Van Zyl, I.S. Pretorius, Microbial cellulose utilization: fundamentals and biotechnology, Microbiol. Mol. Biol. Rev., 66 (2002) 506–77.
  25. K. Harshvardhan, A. Mishra, B. Jha, Purification and characterization of cellulase from a marine Bacillus sp. H1666: a potential agent for single step saccharification of seaweed biomass, J. Mol. Catal. B: Enzym., 93 (2013) 51–56.
  26. H.-Y. Yu, X. Li, Alkali-stable cellulase from a halophilic isolate, Gracilibacillus sp. SK1 and its application in lignocellulosic saccharification for ethanol production, Biomass Bioenergy, 81 (2015) 19–25.
  27. C. Cai, Y. Jin, Y. Pang, Q. Ke, W. Qiu, X. Qiu, Y. Qin, H. Lou, Tracing cellulase components in hydrolyzate during the enzymatic hydrolysis of corncob residue and its analysis, Bioresour. Technol. Rep., 4 (2018) 137–144.
  28. X. Liu, Y. Liu, Z. Jiang, H. Liu, S. Yang, Q. Yan, Biochemical characterization of a novel xylanase from Paenibacillus barengoltzii and its application in xylooligosaccharides production from corncobs, Food Chem., 264 (2018) 310–318.
  29. S.A. Sheweita, A. Ichi-Ishi, J.S. Park, C. Liu, L.M. Malburg, R.H. Doi, Characterization of engF, a gene for a non-cellulosomal Clostridium cellulovorans endoglucanase, Gene (Amsterdam), 182 (1991) 0–167.
  30. X. Shao, M. Jin, A. Guseva, C. Liu, V. Balan, D. Hogsett, B.E. Dale, L. Lynd, Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass, Bioresour. Technol., 102 (2011) 8040–8045.
  31. J.Q. Zhu, L. Qin, W.C. Li, J. Zhang, J. Bao, Y.D. Huang, B.Z. Li, Y.J. Yuan, Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading: overcoming the inhibitors by non-tolerant yeast, Bioresour. Technol., 198 (2015) 39–46.
  32. N. Libardi, C.R. Soccol, A. Góes-Neto, J.D. Oliveira, L.P.D.S. Vandenberghe, Domestic wastewater as substrate for cellulase production by Trichoderma harzianum, Process Biochem., 57 (2017) 190–199.
  33. G.S. Dhillon, S. Kaur, S.K. Brar, M. Verma, Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation, Ind. Crops Prod., 38 (2012) 6–13.
  34. F. Mostafa, A. Abd El Aty, Enzyme activities of the marinederived fungus Alternaria alternata cultivated on selected agricultural wastes, J. Appl. Biol. Sci., 7 (2013) 48–55.
  35. N.K. Ramamoorthy, T.R. Sambavi, S. Renganathan, A study on cellulase production from a mixture of lignocellulosic wastes, Process Biochem., 83 (2019) 148–158.
  36. K.M.V. Nogueira, M. do Nascimento Costa, R.G. de Paula, F.C. Mendonça-Natividade, R. Ricci-Azevedo, R.N. Silva, Evidence of cAMP involvement in cellobiohydrolase expression and secretion by Trichoderma reesei in presence of the inducer sophorose, BMC Microbiol., 15 (2015) 195.
  37. A. Schuster, D. Tisch, V. Seidl-Seiboth, C.P. Kubicek, M. Schmoll, Roles of protein kinase A and adenylate cyclase in lightmodulated cellulase regulation in Trichoderma reesei, Appl. Environ. Microbiol., 78 (2012) 2168–2178.
  38. C.-Y. Wang, Y.-R. Hsieh, C.-C. Ng, H. Chan, H.-T. Lin, W.-S. Tzeng, Y.-T. Shyu, Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05, Enzyme Microb. Technol., 44 (2009) 373–379.
  39. M. Irfan, A. Tayyab, F. Hasan, S. Khan, M. Badshah, A.A. Shah, Production and characterization of organic solvent-tolerant cellulase from Bacillus amyloliquefaciens AK9 isolated from hot spring, Appl. Biochem. Biotechnol., 182 (2017) 1390–1402.
  40. D.A. Santos, M.M. Oliveira, A.A.S. Curvelo, L.P. Fonseca, A.L.M. Porto, Hydrolysis of cellulose from sugarcane bagasse by cellulases from marine-derived fungi strains, Int. Biodeterior. Biodegrad., 121 (2017) 66–78.
  41. N.P. Marques, J. de Cassia Pereira, E. Gomes, R. da Silva, A.R. Araújo, H. Ferreira, A. Rodrigues, K.J. Dussán, D.A. Bocchini, Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse, Ind. Crops Prod., 122 (2018) 66–75.
  42. H.K. Dillon, P.A. Heinsohn, J. Miller, Field Guide for the Determination of Biological Contaminants in Environmental Samples, American Industrial Hygiene Association, Biosafety Committee, AIHA-Rocky Mountain Section, P.O. Box: 746461, Arvada, CO 80006, 1996.
  43. F. Akram, I.U. Haq, W. Imran, H. Mukhtar, Insight perspectives of thermostable endoglucanases for bioethanol production: a review, Renewable Energy, 122 (2018) 225–238.