References
- S. Goswami, S. Chakraborty, S. Ghosh, A. Chakrabarti,
B. Chakraborty, A review on application of data mining
techniques to combat natural disasters, Ain Shams Eng. J.,
9 (2018) 365–378.
- C. Kousky, Informing climate adaptation: a review of the
economic costs of natural disasters, Energy Econ., 46 (2014)
576–592.
- J. Xu, Z. Wang, F. Shen, C. Ouyang, Y. Tu, Natural disasters, and
social conflict: a systematic literature review, Int. J. Disaster Risk
Reduct., 17 (2016) 38–48.
- S. Castiglioni, E. Davoli, F. Riva, M. Palmiotto, P. Camporini,
A. Manenti, E. Zuccato, Mass balance of emerging contaminants
in the water cycle of a highly urbanized and industrialized area
of Italy, Water Res., 131 (2018) 287–298.
- Q. Wu, H. Zhou, N.F.Y. Tam, Y. Tian, Y. Tan, S. Zhou, Q. Li,
Y. Chen, J.Y.S. Leung, Contamination, toxicity and speciation
of heavy metals in an industrialized urban river: implications
for the dispersal of heavy metals, Mar. Pollut. Bull., 104 (2016)
153–161.
- L.T. Di Gregorio, C.A.P. Soares, Post-disaster housing recovery
guidelines for development countries based on experiences in
the American continent, Int. J. Disaster Risk Reduct., 24 (2017)
340–347.
- J. Mendonça, E. Andrade, P.T. Endo, R. Lima, Disaster recovery
solutions for IT systems: a systematic mapping study, J. Syst.
Software, 149 (2019) 511–530.
- W.B.G. Fernando, A.H. Gunapala, W.A. Jayantha, Water supply
and sanitation needs in a disaster – lessons learned through the
tsunami disaster in Sri Lanka, Desalination, 248 (2009) 14–21.
- M. Sabbaghtorkan, R. Batta, Q. He, Prepositioning of assets
and supplies in disaster operations management: review and
research gap identification, Eur. J. Oper. Res., 284 (2020) 1–19.
- F. Yu, X.-Y. Li, X.-S. Han, Risk response for urban water supply
network using case-based reasoning during a natural disaster,
Saf. Sci., 106 (2018) 121–139.
- M. Ozcelik, Alternative model for electricity and water supply
after disaster, J. Taibah Univ. Sci., 11 (2017) 966–974.
- L. Zhou, X. Wu, Z. Xu, H. Fujita, Emergency decision-making
for natural disasters: an overview, Int. J. Disaster Risk Reduct.,
27 (2018) 567–576.
- D.A. Rose, S. Murthy, J. Brooks, J. Bryant, The evolution of
public health emergency management as a field of practice,
Am. J. Public Health, 107 (2017) S126–S133.
- K.T. Ton, J.C. Gaillard, C.E. Adamson, C. Akgungor, H.T. Ho,
Expanding the capabilities of people with disabilities in disaster
risk reduction, Int. J. Disaster Risk Reduct., 34 (2019) 11–17.
- A. Damalas, C. Mettas, E. Evagorou, S. Giannecchini, C. Iasio,
M. Papadopoulos, A. Konstantinou, D. Hadjimitsis, Development
and implementation of a DECATASTROPHIZE platform
and tool for the management of disasters or multiple hazards,
Int. J. Disaster Risk Reduct., 31 (2018) 589–601.
- D. Fogli, G. Guida, Knowledge-centered design of decision
support systems for emergency management, Decis. Support
Syst., 55 (2013) 336–347.
- J. Zhang, H. Liu, G. Yu, J. Ruan, F.T.S. Chan, A three-stage and
multi-objective stochastic programming model to improve the
sustainable rescue ability by considering secondary disasters in
emergency logistics, Comput. Ind. Eng., 135 (2019) 1145–1154.
- S.A. Bagloee, K.H. Johansson, M. Asadi, A hybrid machinelearning
and optimization method for contraflow design in
post-disaster cases and traffic management scenarios, Expert
Syst. Appl., 124 (2019) 67–81.
- D. Sarma, A. Das, U.K. Bera, I.M. Hezam, Redistribution for cost
minimization in disaster management under uncertainty with
trapezoidal neutrosophic number, Comput. Ind., 109 (2019)
226–238.
- M. Dorasamy, M. Raman, M. Kaliannan, Integrated community
emergency management and awareness system: a knowledge
management system for disaster support, Technol. Forecasting
Social Change, 121 (2017) 139–167.
- Y. Shahtaheri, M.M. Flint, J.M. de la Garza, A multi-objective
reliability-based decision support system for incorporating
decision-maker utilities in the design of infrastructure, Adv.
Eng. Inf., 42 (2019) 100939.
- M.S. Khorshidi, M.R. Nikoo, E. Ebrahimi, M. Sadegh, A robust
decision support leader-follower framework for design of
contamination warning system in water distribution network,
J. Cleaner Prod., 214 (2019) 666–673.
- A. Tufano, R. Accorsi, F. Garbellini, R. Manzini, Plant design
and control in food service industry, A multi-disciplinary
decision-support system, Comput. Ind., 103 (2018) 72–85.
- X. Zhao, S. Bai, X. Zhang, Establishing a decision-support
system for eco-design of biological wastewater treatment: a
case study of bioaugmented constructed wetland, Bioresour.
Technol., 274 (2019) 425–429.
- E. Kuznetsova, M.-A. Cardin, M. Diao, S. Zhang,
Integrated decision-support methodology for combined
centralized-decentralized waste-to-energy management
systems design, Renewable Sustainable Energy Rev., 103 (2019)
477–500.
- S.M. Ghavami, Multi-criteria spatial decision support system
for identifying strategic roads in disaster situations, Int. J. Crit.
Infrastruct. Prot., 24 (2019) 23–36.
- A. Boggia, G. Massei, E. Pace, L. Rocchi, L. Paolotti, M. Attard,
Spatial multicriteria analysis for sustainability assessment:
a new model for decision-making, Land Use Policy, 71 (2018)
281–292.
- A. Mardani, E.K. Zavadskas, Z. Khalifah, N. Zakuan, A. Jusoh,
K.M. Nor, M. Khoshnoudi, A review of multi-criteria decisionmaking
applications to solve energy management problems:
two decades from 1995 to 2015, Renewable Sustainable Energy
Rev., 71 (2017) 216–256.
- M. Dell’Ovo, S. Capolongo, A. Oppio, Combining spatial
analysis with MCDA for the siting of healthcare facilities, Land
Use Policy, 76 (2018) 634–644.
- O.E. Demesouka, A.P. Vavatsikos, K.P. Anagnostopoulos,
Suitability analysis for siting MSW landfills and its multicriteria
spatial decision support system: method, implementation, and
case study, Waste Manage., 33 (2013) 1190–1206.
- D. Delgado-Gomez, E. Baca-Garcia, D. Aguado, P. Courtet,
J. Lopez-Castroman, Computerized adaptive test vs. decision
trees: development of a support decision system to identify
suicidal behavior, J. Affective Disord., 206 (2016) 204–209.
- H.-H. Yu, K.-H. Chang, H.-W. Hsu, R. Cuckler, A Monte Carlo
simulation-based decision support system for reliability
analysis of Taiwan’s power system: framework and empirical
study, Energy, 178 (2019) 252–262.
- D. Zheng, L. Yu, L. Wang, A techno-economic-risk decisionmaking
methodology for large-scale building energy efficiency
retrofit using Monte Carlo simulation, Energy, 189 (2019)
116169.
- A.M. Mutawa, M.A. Alzuwawi, Multilayered rule-based expert
system for diagnosing uveitis, Artif. Intell. Med., 99 (2019)
101691.
- S. Qiu, M. Sallak, W. Schön, H.X.G. Ming, A valuation-based
system approach for risk assessment of belief rule-based expert
systems, Inf. Sci., 466 (2018) 323–336.
- EPA, Planning for an Emergency Drinking Water Supply,
Environmental Protection Agency, 2011.
- P.H. Dos Santos, S.M. Neves, D.O. Sant’Anna, C.H.d. Oliveira,
H.D. Carvalho, The analytic hierarchy process supporting
decision-making for sustainable development: an overview of
applications, J. Cleaner Prod., 212 (2019) 119–138.
- S.G. Arcidiacono, S. Corrente, S. Greco, GAIA-SMAAPROMETHEE
for a hierarchy of interacting criteria, Eur. J.
Oper. Res., 270 (2018) 606–624.
- M.A. Boujelben, A unicriterion analysis based on the
PROMETHEE principles for multicriteria ordered clustering,
Omega, 69 (2017) 126–140.
- Available at: http://www.promethee-gaia.net/index.html
- B. Mareschal, Visual PROMETHEE 1.4 manual, Vol. 1, Visual
PROMETHEE 1, Framingham, MA, 2013.
- J. Jung, H.-R. Cho, J. Sohn, S. Lee, S.K. Chae, An experimental
study on decision-making for multi-source water, J. Korea Soc.
Water Wastewater, 29 (2015) 1–9.
- M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
I.H. Witten, The WEKA data mining software: an update,
ACM SIGKDD Explor. Newsl., 11 (2009) 10–18.
- http://www.exsys.com/exsyscorvid.html
- MEK, Manual of Response to the Drinking Water Crisis
Response Manual, Ministry of Environment in Korea, 2016.