References

  1. S.M. Cao, M. Dezotti, J.P. Bassin, MBBR followed by microfiltration and reverse osmosis as a compact alternative for advanced treatment of a pesticide‐producing industry wastewater towards reuse, Can. J. Chem. Eng., 94 (2016) 1657–1667.
  2. S. Borghei, M. Sharbatmaleki, P. Pourrezaie, G. Borghei, Kinetics of organic removal in fixed-bed aerobic biological reactor, Bioresour. Technol., 99 (2008) 1118–1124.
  3. O. Sahu, P. Chaudhari, Removal of color and chemical oxygen demand from sugar industry wastewater using thermolysis processes, Desal. Water Treat., 56 (2015) 1758–1767.
  4. P.Y. Yang, L. Chang, S. Whalen, Anaerobic/aerobic pretreatment of sugarcane mill wastewater for application of drip irrigation, Water Sci. Technol., 24 (1991) 243–250.
  5. M.F. Hamoda, H.A. Al-Sharekh, Sugar wastewater treatment with aerated fixed-film biological systems, Water Sci. Technol., 40 (1999) 313.
  6. M. Farhadian, M. Borghei, V.V. Umrania, Treatment of beet sugar wastewater by UAFB bioprocess, Bioresour. Technol., 98 (2007) 3080–3083.
  7. G. Güven, A. Perendeci, A. Tanyolaç, Electrochemical treatment of simulated beet sugar factory wastewater, Chem. Eng., 151 (2009) 149–159.
  8. A. Ragen, L.W.S. Hoi, T. Ramjeawon, Pilot Plant Investigation of the Treatment of Synthetic Sugar Factory Wastewater Using the Upflow Anaerobic Sludge Blanket (UASB) Process, Fifth Annual Meeting of Agricultural Scientists, 2002, p. 149.
  9. S.W. Stewart, Co-generation opportunities utilizing sugar industry wastewater through the use of biological treatment systems, Elect. Suppl. Indus. Trans., 14 (2004) 46–51.
  10. G. Buttiglieri, F. Malpei, E. Daverio, M. Melchiori, H. Nieman, J. Ligthart, Denitrification of drinking water sources by advanced biological treatment using a membrane bioreactor, Desalination, 178 (2005) 211–218.
  11. S.H. Hosseini, S. Borghei, The treatment of phenolic wastewater using a moving bed bio-reactor, Process Biochem., 40 (2005) 1027–1031.
  12. S.I. Abou-Elela, M.M. Kamel, M.E. Fawzy, Biological treatment of saline wastewater using a salt-tolerant microorganism, Desalination, 250 (2010) 1–5.
  13. L. Dvořák, T. Lederer, V. Jirků, J. Masák, L. Novák, Removal of aniline, cyanides and diphenylguanidine from industrial wastewater using a full-scale moving bed biofilm reactor, Process Biochem., 49 (2014) 102–109.
  14. S.A. Mirbagheri, M. Bagheri, S. Boudaghpour, M. Ehteshami, Z. Bagheri, Performance evaluation and modeling of a submerged membrane bioreactor treating combined municipal and industrial wastewater using radial basis function artificial neural networks, Environ. Health Sci. Eng., 13 (2015) 17.
  15. X. Yang, M.C. Rosell, V.L. Grimau, A review on the present situation of wastewater treatment in textile industry with membrane bioreactor and moving bed biofilm reactor, Desal. Water Treat., 103 (2018) 315–322.
  16. A.C. van Haandel, J.G.M. van der Lubbe, Handbook of Biological Wastewater Treatment: Design and Optimisation of Activated Sludge Systems, IWA Publishing, 2012.
  17. T. Leiknes, H. Ødegaard, The development of a biofilm membrane bioreactor, Desalination, 202 (2007) 135–143.
  18. H. Ødegaard, B. Rusten, T. Westrum, A new moving bed biofilm reactor-applications and results, Water Sci. Technol., 29 (1994) 157.
  19. F.I. Hai, K. Yamamoto, C.-H. Lee, Membrane Biological Reactors: Theory, Modeling, Design, Management and Applications to Wastewater Reuse, IWA Publishing, 2018.
  20. H.B. Pinto, B.M. de Souza, M. Dezotti, Treatment of a pesticide industry wastewater mixture in a moving bed biofilm reactor followed by conventional and membrane processes for water reuse, J. Cleaner Prod., 201 (2018) 1061–1070.
  21. S. Vijayaraghavalu, H.K. Prasad, M. Kumar, Treatment and Recycling of Wastewater from Dairy Industry, R. Singh, R. Singh, Eds., Advances in Biological Treatment of Industrial Waste Water and their Recycling for a Sustainable Future was in Singapore, 2019.
  22. A. Pervissian, W.J. Parker, R.L. Legge, Combined MBBR‐MF for industrial wastewater treatment, Environ. Prog. Sustainable Energy, 31 (2012) 288–295.
  23. S. Wang, H. Liu, J. Gu, H. Sun, M. Zhang, Y. Liu, Technology feasibility and economic viability of an innovative integrated ceramic membrane bioreactor and reverse osmosis process for producing ultrapure water from municipal wastewater, Chem. Eng., 375 (2019) 122078.
  24. H. Lin, W. Gao, F. Meng, B.-Q. Liao, K.-T. Leung, L. Zhao, J. Chen, H. Hong, Membrane bioreactors for industrial wastewater treatment: a critical review, Environ. Sci. Technol., 42 (2012) 677–740.
  25. M. Faridnasr, B. Ghanbari, A. Sassani, Optimization of the moving-bed biofilm sequencing batch reactor (MBSBR) to control aeration time by kinetic computational modeling: simulated sugar-industry wastewater treatment, Bioresour. Technol., 208 (2016) 149–160.
  26. R. Shokoohi, G. Asgari, M. Leili, M. Khiadani, M. Foroughi, M.S. Hemmat, Modelling of moving bed biofilm reactor (MBBR) efficiency on hospital wastewater (HW) treatment: a comprehensive analysis on BOD and COD removal, Int. J. Environ. Sci. Technol., 14 (2017) 841–852.
  27. M. Delnavaz, B. Ayati, H. Ganjidoust, Prediction of moving bed biofilm reactor (MBBR) performance for the treatment of aniline using artificial neural networks (ANN), J. Hazard. Mater., 179 (2010) 769–775.
  28. A. Zinatizadeh, E. Ghaytooli, Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR): process modeling and optimization, J. Taiwan Inst. Chem. Eng., 53 (2015) 98–111.
  29. J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, Cambridge, MA, USA, 1994, p. 32.
  30. W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming: An Introduction, Morgan Kaufmann Publishers Inc., San Francisco, CA, United States, 1998.
  31. M. Oltean, D. Dumitrescu, Multi Expression Programming, Genetic Programming and Evolvable Machines, Kluwer, 2002.
  32. A. Baykasoğlu, H. Güllü, H. Çanakçı, L. Özbakır, Prediction of compressive and tensile strength of limestone via genetic programming, Expert Syst. Appl., 35 (2008) 111–123.
  33. A.H. Alavi, A.H. Gandomi, M.G. Sahab, M. Gandomi, Multi expression programming: a new approach to formulation of soil classification, Eng. Comput., 26 (2010) 111–118.
  34. A.H. Gandomi, A.H. Alavi, G.J. Yun, Formulation of uplift capacity of suction caissons using multi expression programming, Civ. Eng., 15 (2011) 363–373.
  35. A.H. Alavi, M. Ameri, A.H. Gandomi, M.R. Mirzahosseini, Formulation of flow number of asphalt mixes using a hybrid computational method, Constr. Build. Mater., 25 (2011) 1338–1355.
  36. M. Bagheri, A.H. Gandomi, M. Bagheri, M. Shahbaznezhad, Multi‐expression programming based model for prediction of formation enthalpies of nitro‐energetic materials, Expert Syst., 30 (2013) 66–78.
  37. A. Rachwal, Comparisons Between Slow Sand and High Rate Biofiltration, Advances in Slow Sand and Alternative Biological Filtration, 1996, pp. 3–10.
  38. S. Maghsudi, S.A. Mirbagheri, M. Besharati Fard, Removal of nitrate, phosphate and COD from synthetic municipal wastewater treatment plant using membrane filtration as a post-treatment of adsorption column, Desal. Water Treat., 115 (2018) 53–63.
  39. S.T. Khu, S.Y. Liong, V. Babovic, H. Madsen, N. Muttil, Genetic programming and its application in real‐time runoff forecasting, J. Am. Water Resour. Assoc., 37 (2001) 439–451.
  40. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA, 1992.
  41. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press, 55 Hayward St., Cambridge, MA, United States, 1975, p. 975.
  42. T.-M. Lee, H. Oh, Y.-K. Choung, S. Oh, M. Jeon, J.H. Kim, S.H. Nam, S. Lee, Prediction of membrane fouling in the pilot-scale microfiltration system using genetic programming, Desalination, 247 (2009) 285–294.
  43. S.J. Kim, S. Oh, Y.G. Lee, M.G. Jeon, I.S. Kim, J.H. Kim, A control methodology for the feed water temperature to optimize SWRO desalination process using genetic programming, Desalination, 247 (2009) 190–199.
  44. A.H. Gandomi, A.H. Alavi, M.G. Sahab, New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming, Mater. Struct., 43 (2010) 963–983.
  45. C. Suh, B. Choi, S. Lee, D. Kim, J. Cho, Application of genetic programming to develop the model for estimating membrane damage in the membrane integrity test using fluorescent nanoparticle, Desalination, 281 (2011) 80–87.
  46. A. Fouladitajar, F.Z. Ashtiani, A. Okhovat, B. Dabir, Membrane fouling in microfiltration of oil-in-water emulsions; a comparison between constant pressure blocking laws and genetic programming (GP) model, Desalination, 329 (2013) 41–49.
  47. M. Oltean, C. Groşan, Evolving Evolutionary Algorithms using Multi Expression Programming, In: European Conference on Artificial Life was in Berlin, Heidelberg, 2003.
  48. M.M. Nelson, W.T. Illingworth, A Practical Guide to Neural Nets, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, United States, 1991.
  49. K. Swingler, Applying Neural Networks: A Practical Guide, Morgan Kaufmann Publishers, Burlington, Massachusetts, 1996.
  50. M. Oltean, C. Grosan, A comparison of several linear genetic programming techniques, Complex Syst., 14 (2003) 285–314.