References

  1. S. Haydar, G. Hussain, O. Nadeem, H. Haider, A. Bari, A. Hayee, Performance evaluation of anaerobic-aerobic treatment for the wastewater of potato processing industry: a case study of a local chips factory, Pak. J. Eng. Appl. Sci., 14 (2014) 27–37.
  2. V. Bosak, A. Van der Zaag, A. Crolla, C. Kinsley, D. Chabot, S. Miller, R. Gordon, Treatment of potato farm wastewater with sand filtration, Environ. Technol., 37 (2016) 1597–1604.
  3. B. Mishra, A. Arora, Optimization of a biological process for treating potato chips industry wastewater using a mixed culture of Aspergillus foetidus and Aspergillus niger, Bioresour. Technol., 94 (2004) 9–12.
  4. T. Dobbeleers, D. Daens, S. Miele, J. D’aes, M. Caluwé, L. Geuens, J. Dries, Performance of aerobic nitrite granules treating an anaerobic pre-treated wastewater originating from the potato industry, Bioresour. Technol., 226 (2017) 211–219.
  5. E. Barampouti, S. Mai, A. Vlyssides, Dynamic modeling of biogas production in an UASB reactor for potato processing wastewater treatment, Chem. Eng. J., 106 (2005) 53–58.
  6. N. Bertola, L. Palladino, A. Bevilacqua, N. Zaritzky, Optimisation of the design parameters in an activated sludge system for the wastewater treatment of a potato processing plant, J. Food Eng., 40 (1999) 27–33.
  7. G. Hassani, A.A. Babaei, A. Takdastan, M. Shirmardi, F. Yousefian, M.J. Mohammadi, Occurrence and fate of 17β-estradiol in water resources and wastewater in Ahvaz, Iran, Global Nest J., 18 (2016) 855–866.
  8. M. Kobya, H. Hiz, E. Senturk, C. Aydiner, E. Demirbas, Treatment of potato chips manufacturing wastewater by electrocoagulation, Desalination, 190 (2006) 201–211.
  9. T. Michalev, I. Markovska, S. Yaneva, Wastewater Treatment with Natural Zeolite of the Clinoptilolite Type, 55th Science Conference of Ruse University, Ruse, Bulgaria, 2016.
  10. M.H. El-Naas, S. Al-Zuhair, M.A. Alhaija, Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon, J. Hazard. Mater., 173 (2010) 750–757.
  11. S. Lv, X. Chen, Y. Ye, S. Yin, J. Cheng, M. Xia, Rice hull/MnFe2O4 composite: preparation, characterization and its rapid microwave-assisted COD removal for organic wastewater, J. Hazard. Mater., 171 (2009) 634–639.
  12. A.H. Mahvi, Sequencing batch reactor: a promising technology in wastewater treatment, application of MBR technology in municipal wastewater treatment, Iran. J. Environ. Health Sci. Eng., 5 (2008) 79–90.
  13. M.J. Mohammadi, A. Takdastan, S. Jorfi, A. Neisi, M. Farhadi, A.R. Yari, S. Dobaradaran, Y.O. Khaniabadi, Electrocoagulation process to chemical and biological oxygen demand treatment from carwash grey water in Ahvaz megacity, Iran, Data Brief, 11 (2017) 634–639.
  14. A. Naghizadeh, A.H. Mahvi, A.R. Mesdaghinia, M. Alimohammadi, Application of MBR Technology in municipal wastewater treatment, Arabian J. Sci. Eng., 36 (2011) 3–10.
  15. E. Bazrafshan, M.A. Alipour, A.H. Mahvi, Textile wastewater treatment by application of combined chemical coagulation, electrocoagulation, and adsorption processes, Desal. Water Treat., 57 (2015) 9203–9215.
  16. Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions, J. Hazard. Mater., 283 (2015) 329–339.
  17. J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García, G. Prados-Joya, R. Ocampo-Pérez, Pharmaceuticals as emerging contaminants and their removal from water, a review, Chemosphere, 93 (2013) 1268–1287.
  18. X. Wei, Y. Wang, A.J. Hernández-Maldonado, Z. Chen, Guidelines for rational design of high-performance absorbents: a case study of zeolite adsorbents for emerging pollutants in water, Green Energy Environ., 2 (2017) 363–369.
  19. R. Bansode, J. Losso, W. Marshall, R. Rao, R. Portier, Pecan shell-based granular activated carbon for treatment of chemical oxygen demand (COD) in municipal wastewater, Bioresour. Technol., 94 (2004) 129–135.
  20. T.M. Huggins, A. Haeger, J.C. Biffinger, Z.J. Ren, Granular biochar compared with activated carbon for wastewater treatment and resource recovery, Water Res., 94 (2016) 225–232.
  21. R. Khosravi, A. Zarei, M. Heidari, A. Ahmadfazeli, M. Vosughi, M. Fazlzadehdavilb, Application of ZnO and TiO2 nanoparticles coated onto montmorillonite in the presence of H2O2 for efficient removal of cephalexin from aqueous solutions, Korean J. Chem. Eng., 35 (2018) 1000–1008.
  22. M.F. Omer, V. Renuga, N. Sripriya, N.U. Prakash, Adsorption isothermal studies on the removal of BOD and COD of a leather tannery effluent using clinoptilolite, Int. J. Pharm. Technol. Res., 10 (2017) 496–500.
  23. O. Ospanov, M. Myrzakhmetov, D. Andraka, L. Dzienis, Application of natural zeolite for intensification of municipal wastewater treatment, J. Ecol. Eng., 18 (2017) 17–181.
  24. E. El-Sharkawy, A.Y. Soliman, K.M. Al-Amer, Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation, J. Colloid Interface Sci., 310 (2007) 498–508.
  25. D. Mohan, K.P. Singh, V.K. Singh, Wastewater treatment using low cost activated carbons derived from agricultural byproducts—a case study, J. Hazard. Mater., 152 (2008) 1045–1053.
  26. M.V. Niri, A.H. Mahvi, M. Alimohammadi, M. Shirmardi, H. Golastanifar, M.J. Mohammadi, A. Naeimabadi, M. Khishdost, Removal of natural organic matter (NOM) from an aqueous solution by NaCl and surfactant-modified clinoptilolite, J. Water Health, 13 (2015) 394–405.
  27. A. Takdastan, A.H. Mahvi, E.C. Lima, M. Shirmardi, A.A. Babaei, G.H. Goudarzi, A. Neisi, M. Heidari Farsani, M. Vosoughi, Preparation, characterization, and application of activated carbon from low-cost material for the adsorption of tetracycline antibiotic from aqueous solutions, Water Sci. Technol., 74 (2016) 2349–2363.
  28. K. Santhy, P. Selvapathy, Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon, Bioresour. Technol., 97 (2006) 1329–1336.
  29. H. Golestanifar, A. Asadi, A. Alinezhad, B. Haybati, M.V. Niri, Isotherm and kinetic studies on the adsorption of nitrate onto nanoalumina and iron-modified pumice, Desal. Water Treat., 57 (2016) 1–8.
  30. S.P.D. Kaman, I.A.W. Tan, L.L.P. Lim, Palm Oil Mill Effluent Treatment Using Coconut Shell – Based Activated Carbon: Adsorption Equilibrium and Isotherm, The 9th International Unimas Stem Engineering Conference (ENCON 2016) “Innovative Solutions for Engineering and Technology Challenges”, MATEC Web of Conferences, Malaysia, 2017.
  31. N. Ertugay, F.N. Acar, Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: kinetic study, Arabian J. Chem., 10 Suppl. 1 (2017) S1158–S1163.
  32. M. Shavandi, Z. Haddadian, M. Ismail, N. Abdullah, Z. Abidin, Removal of Fe(III), Mn(II) and Zn(II) from palm oil mill effluent (POME) by natural zeolite, J. Taiwan Inst. Chem. Eng., 43 (2012) 750–759.
  33. C.T. Wang, W.L. Chou, M.H. Chung, Y.M. Kuo, COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode, Desalination, 253 (2010) 129–134.
  34. S. Montalvo, L. Guerrero, R. Borja, I. Cortes, E. Sánchez, M. Colmenarejo, Effect of the influent COD concentration on the anaerobic digestion of winery wastewaters from grapered and tropical fruit (guava) wine production in fluidized bed reactors with Chilean natural zeolite for biomass immobilization, Chem. Biochem. Eng. Q., 24 (2010) 219–226.
  35. S. Aber, M. Sheydaei, Removal of COD from industrial effluent containing indigo dye using adsorption method by activated carbon cloth: optimization, kinetic, and isotherm studies, Clean – Soil Air Water, 40 (2011) 87–94.
  36. A. Ahmad, S. Sumathi, B. Hameed, Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: equilibrium and kinetic studies, Water Res., 39 (2005) 2483–2494.