References

  1. Metcalf and Eddy, Wastewater Engineering Treatment, Disposal and Reuse, McGraw-Hill, New York 1991.
  2. S. Momeni, M. Alimohammadi, K. Naddafi, R. Nabizadeh, F. Changani, A. Zarei, M. Rahmatinia, Study of sludge from the largest wastewater treatment plant in the Middle East (Southern Tehran, Iran) based on chemical and microbiological parameters for use in agriculture, Desal. Water Treat., 160 (2019) 153–160.
  3. D. Orhon, N. Artan, Modelling of Activated Sludge Systems, Technomic Publishing, Basel, 1994.
  4. WEF, Operation of Municipal Wastewater Treatment Plants, Manual of Practice No. 11, Water Environment Federation, WEF Press, New York, 2008, pp. 13–20.
  5. L.H. Lee, T.Y. Wu, K.P.Y. Shak, S.L. Lim, K.Y. Ng, M.N. Nguyen, W.H. Teoh, Sustainable approach to biotransform industrial sludge into organic fertilizer via vermicomposting: a minireview, J. Chem. Technol. Biotechnol., 93 (2018) 925–935.
  6. I.D.S. Henriques, N. Love, The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins, Water Res., 41 (2007) 4177–4185.
  7. A.J. Li, X.Y. Li, J.D. Gu, Characteristics of free cells and aggregated flocs for the flocculation and sedimentation of activated sludge, Int. J. Environ. Sci. Technol., 13 (2016) 581–588.
  8. S. Guibaud, S. Comte, F. Bordas, S. Dupuy, M. Baudu, Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead, and nickel, Chemosphere, 59 (2005) 629–638.
  9. B.M. Wién, B. Jin, P. Lant, The influence of key chemical constituents in activated sludge on surface and flocculating properties, Water Res., 37 (2003) 2127–2139.
  10. H.-C. Flemming, J. Wingender, The biofilm matrix, Nat. Rev. Microbiol., 8 (2010) 623–633.
  11. J.C. Campos, C.R.A. Machado, J.M.S. Couto, P.L.F. Florido, A.C.F.P. Cerqueira, V.M.J. Santiago, Evaluation of an activated sludge process combined with powdered activated carbon for the treatment of oil refinery wastewater, J. Int. Environ. Appl. Sci., 9 (2014) 24–36.
  12. S. Jafarinejad, Activated sludge combined with powdered activated carbon (PACT process) for the petroleum industry wastewater treatment: a review, Chem. Int., 3 (2017) 268–277.
  13. Y. Yin, X.J. Zhang, J. Graham, L. Luongo, Examination of purified single-walled carbon nanotubes on activated sludge process using batch reactors, J. Environ. Sci. Health., Part A, 44 (2009) 661–665.
  14. A.L. Luongo, X.J. Zhang, Toxicity of carbon nanotubes to the activated sludge process, J. Hazard. Mater., 178 (2010) 356–362.
  15. Y. Yin, X.J. Zhang, J. Graham, L. Luango, Assement of singlewalled carbon nanotubes on activated sludge wastewater treatment process, Water Environment Federation (WFETEC), 50 (2007) 3196–3205.
  16. R. Hai, Y. Wang, X. Wang, Z. Du, Y. Li, Impacts of multi-walled carbon nanotubes on nutrient removal from wastewater and bacterial community structure in activated sludge, PLoS One, 9 (2014) 1–9.
  17. N.C. Mueller, B. Nowack, Exposure modelling of engineered nanoparticles in the environment, Environ. Sci. Technol., 42 (2008) 4447–4453.
  18. F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack, Modeled environmental of engineered nanomaterials (TiO, ZnO, Ag, CNT, Fullerenes) for different regions, Environ. Sci. Technol., 43 (2009) 9216–9222.
  19. M.H. Dehghani, A. Naghizadeh, A. Rashidi, E. Derakhshani, Adsorption of reactive blue 29 dye from aqueous solution by multiwall carbon nanotubes, Desal. Water Treat., 51 (2013) 7655–7662.
  20. M.H. Dehghani, S. Kamalian, M. Shayeghi, M. Yousefi, Z. Heidarinejad, S. Agarwal, V.K. Gupta, High performance removal of diazinon pesticide from water using multi-walled carbon nanotubes, Microchem. J., 145 (2019) 486–491.
  21. M.H. Dehghani, M. Mohammadi, M.A. Mohammadi, A.H. Mahvi, K. Yetilmezsoy, A. Bhatnagar, B. Heibati, G. Mckay, Equilibrium and kinetic studies of trihalomethanes adsorption onto multi wall carbon nanotubes, Water Air Soil Pollut., 227 (2016) 1–17.
  22. G.A. Haghighat, H. Dehghani, S. Nasseri, A. Mahvi, H.N. Rastkari, Comparison of carbon nanotubes and activated alumina efficiencies in fluoride removal from drinking water, Indian J. Sci. Technol., 5 (2012) 2432–2435.
  23. M.H. Dehghani, M. Alimohammadi, A.H. Mahvi, N. Rastkari, M. Mostofi, M. Gholami, Performance of multiwall carbon nanotubes for removal phenol from aqueous solutions, Iran. J. Health Environ., 6 (2014) 491–502.
  24. Y. Yin, X. Zhang, Evaluation of the impact of single-walled carbon nanotubes in activated sludge wastewater reactor, Water Sci. Technol., 58 (2008) 623–628.
  25. X. Zheng, Y. Su, Y. Chen, Y. Wei, M. Li, H. Huang, The effects of carbon nanotubes on nitrogen and phosphorus from real wastewater in the activated sludge systems, RSC Adv., 4 (2014) 45953–45959.
  26. S. Haydar, J.A. Aziz, Kinetic coefficients for the biological treatment of tannery wastewater using activated sludge process, Pak. J. Eng. Appl. Sci., 5 (2009) 39–43.
  27. J.E. Bailey, D.F. Ollis, Biochemical Engineering Fundamentals, McGraw-Hill, New York, 1977, pp. 498–508.
  28. M.L. Davis, Water and Wastewater Engineering Design, Principles and Practice, McGraw Hill, New York, 2010, pp. 23.1–115.
  29. R. Van den Broeck, J. Van Impe, I. Smets, Assessment of activated sludge stability in lab-scale experiments, J. Biotechnol., 141 (2009) 147–154.
  30. R. Dutta, Fundamentals of Biochemical Engineering, Ane Books and Springer Inc., India and New York, 2008.
  31. S. Mardani, A. Mirbagheri, M.M. Amin, M. Ghasemian, Determination of biokinetic coefficients for activated sludge processes on municipal wastewater, Iran. J. Environ. Health Sci. Eng., 8 (2011) 25–34.
  32. A. Lateef, M.N. Chaudhry, S. Ilyas, Biological treatment of dairy wastewater using activated sludge, Sci. Asia, 39 (2013) 179–185.
  33. M.H. Al-Malack, Determination of biokinetic coefficient of an immersed membrane bioreactor, J. Membr. Sci., 271 (2006) 47–58.
  34. M. Hadei, M. Aalipour, A. Fatehizadeh, H.R. Safavi, M. Ghasemian, A.R. Sahbaei, S.M. Mousavi, M.A. Zadeh, M.M. Amin, Determination of biokinetic coefficient for an adsorption/biooxidation process on municipal wastewater treatment, Int. J. Environ. Health Eng., 4 (2015) 1–6.
  35. N.B. Prakash, Biokinetic studies in the treatment of tannery effluent, J. Sustainable Dev., 6 (2013) 89–97.
  36. M.A. Dytczak, K.L. Londry, J.A. Oleszkiewicz, Nitrifying genera in activated sludge may influence nitrification rates, Water Environ. Res., 80 (2008) 388–396.
  37. F.M.E. Emerald, D. Prasad, M.R. Ravindra, H. Pushpadass, Performance and biomass kinetics of activated sludge system treating dairy wastewater, Int. J. Dairy Technol., 65 (2012) 609–615.
  38. L.D. Benefield, C.W. Randall, Biological Process Design for Wastewater Treatment, Prentice-Hall Inc., New Jersey, 1980.
  39. M. Henze, P. Harremoes, J.C. Jansen, E. Arvin, Wastewater Treatment: Biological and Chemical Processes, Springer, Verlag- Berlin, 1997, pp. 56–112.
  40. A. Pala, Ö. Bölükbaş, Evaluation of kinetic parameters for biological CNP removal from a municipal wastewater through batch tests, Process Biochem., 40 (2005) 629–635.
  41. U. Wiesmann, I.S. Choi, E.M. Dombrowski, Fundamentals of Biological Wastewater Treatment, Wiley-VCH Verlag, Weinheim, 2007.
  42. A.F. Gaudy, E.T. Gaudy, Advances in Biochemical Engineering, Springer, Verlag, Berlin, 1972, pp. 97–143.
  43. Z. Shen, W.B. Arbuckle, Estimating biokinetic coefficients in the PACT™ system, J. Environ. Manage., 167 (2016) 66–74.