References
- Metcalf and Eddy, Wastewater Engineering Treatment, Disposal
and Reuse, McGraw-Hill, New York 1991.
- S. Momeni, M. Alimohammadi, K. Naddafi, R. Nabizadeh,
F. Changani, A. Zarei, M. Rahmatinia, Study of sludge from
the largest wastewater treatment plant in the Middle East
(Southern Tehran, Iran) based on chemical and microbiological
parameters for use in agriculture, Desal. Water Treat., 160 (2019)
153–160.
- D. Orhon, N. Artan, Modelling of Activated Sludge Systems,
Technomic Publishing, Basel, 1994.
- WEF, Operation of Municipal Wastewater Treatment Plants,
Manual of Practice No. 11, Water Environment Federation,
WEF Press, New York, 2008, pp. 13–20.
- L.H. Lee, T.Y. Wu, K.P.Y. Shak, S.L. Lim, K.Y. Ng, M.N. Nguyen,
W.H. Teoh, Sustainable approach to biotransform industrial
sludge into organic fertilizer via vermicomposting: a minireview,
J. Chem. Technol. Biotechnol., 93 (2018) 925–935.
- I.D.S. Henriques, N. Love, The role of extracellular polymeric
substances in the toxicity response of activated sludge bacteria
to chemical toxins, Water Res., 41 (2007) 4177–4185.
- A.J. Li, X.Y. Li, J.D. Gu, Characteristics of free cells and
aggregated flocs for the flocculation and sedimentation of
activated sludge, Int. J. Environ. Sci. Technol., 13 (2016) 581–588.
- S. Guibaud, S. Comte, F. Bordas, S. Dupuy, M. Baudu,
Comparison of the complexation potential of extracellular
polymeric substances (EPS), extracted from activated sludges
and produced by pure bacteria strains, for cadmium, lead, and
nickel, Chemosphere, 59 (2005) 629–638.
- B.M. Wién, B. Jin, P. Lant, The influence of key chemical
constituents in activated sludge on surface and flocculating
properties, Water Res., 37 (2003) 2127–2139.
- H.-C. Flemming, J. Wingender, The biofilm matrix, Nat. Rev.
Microbiol., 8 (2010) 623–633.
- J.C. Campos, C.R.A. Machado, J.M.S. Couto, P.L.F. Florido,
A.C.F.P. Cerqueira, V.M.J. Santiago, Evaluation of an activated
sludge process combined with powdered activated carbon for
the treatment of oil refinery wastewater, J. Int. Environ. Appl.
Sci., 9 (2014) 24–36.
- S. Jafarinejad, Activated sludge combined with powdered
activated carbon (PACT process) for the petroleum industry
wastewater treatment: a review, Chem. Int., 3 (2017) 268–277.
- Y. Yin, X.J. Zhang, J. Graham, L. Luongo, Examination of
purified single-walled carbon nanotubes on activated sludge
process using batch reactors, J. Environ. Sci. Health., Part A, 44
(2009) 661–665.
- A.L. Luongo, X.J. Zhang, Toxicity of carbon nanotubes to the
activated sludge process, J. Hazard. Mater., 178 (2010) 356–362.
- Y. Yin, X.J. Zhang, J. Graham, L. Luango, Assement of singlewalled
carbon nanotubes on activated sludge wastewater
treatment process, Water Environment Federation (WFETEC),
50 (2007) 3196–3205.
- R. Hai, Y. Wang, X. Wang, Z. Du, Y. Li, Impacts of multi-walled
carbon nanotubes on nutrient removal from wastewater and
bacterial community structure in activated sludge, PLoS One,
9 (2014) 1–9.
- N.C. Mueller, B. Nowack, Exposure modelling of engineered
nanoparticles in the environment, Environ. Sci. Technol.,
42 (2008) 4447–4453.
- F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack, Modeled
environmental of engineered nanomaterials (TiO, ZnO, Ag,
CNT, Fullerenes) for different regions, Environ. Sci. Technol.,
43 (2009) 9216–9222.
- M.H. Dehghani, A. Naghizadeh, A. Rashidi, E. Derakhshani,
Adsorption of reactive blue 29 dye from aqueous solution by
multiwall carbon nanotubes, Desal. Water Treat., 51 (2013)
7655–7662.
- M.H. Dehghani, S. Kamalian, M. Shayeghi, M. Yousefi,
Z. Heidarinejad, S. Agarwal, V.K. Gupta, High performance
removal of diazinon pesticide from water using multi-walled
carbon nanotubes, Microchem. J., 145 (2019) 486–491.
- M.H. Dehghani, M. Mohammadi, M.A. Mohammadi,
A.H. Mahvi, K. Yetilmezsoy, A. Bhatnagar, B. Heibati, G. Mckay,
Equilibrium and kinetic studies of trihalomethanes adsorption
onto multi wall carbon nanotubes, Water Air Soil Pollut.,
227 (2016) 1–17.
- G.A. Haghighat, H. Dehghani, S. Nasseri, A. Mahvi, H.N. Rastkari,
Comparison of carbon nanotubes and activated alumina
efficiencies in fluoride removal from drinking water, Indian J.
Sci. Technol., 5 (2012) 2432–2435.
- M.H. Dehghani, M. Alimohammadi, A.H. Mahvi, N. Rastkari,
M. Mostofi, M. Gholami, Performance of multiwall carbon
nanotubes for removal phenol from aqueous solutions, Iran. J.
Health Environ., 6 (2014) 491–502.
- Y. Yin, X. Zhang, Evaluation of the impact of single-walled
carbon nanotubes in activated sludge wastewater reactor,
Water Sci. Technol., 58 (2008) 623–628.
- X. Zheng, Y. Su, Y. Chen, Y. Wei, M. Li, H. Huang, The effects
of carbon nanotubes on nitrogen and phosphorus from real
wastewater in the activated sludge systems, RSC Adv., 4 (2014)
45953–45959.
- S. Haydar, J.A. Aziz, Kinetic coefficients for the biological
treatment of tannery wastewater using activated sludge
process, Pak. J. Eng. Appl. Sci., 5 (2009) 39–43.
- J.E. Bailey, D.F. Ollis, Biochemical Engineering Fundamentals,
McGraw-Hill, New York, 1977, pp. 498–508.
- M.L. Davis, Water and Wastewater Engineering Design,
Principles and Practice, McGraw Hill, New York, 2010,
pp. 23.1–115.
- R. Van den Broeck, J. Van Impe, I. Smets, Assessment of
activated sludge stability in lab-scale experiments, J. Biotechnol.,
141 (2009) 147–154.
- R. Dutta, Fundamentals of Biochemical Engineering, Ane
Books and Springer Inc., India and New York, 2008.
- S. Mardani, A. Mirbagheri, M.M. Amin, M. Ghasemian,
Determination of biokinetic coefficients for activated sludge
processes on municipal wastewater, Iran. J. Environ. Health Sci.
Eng., 8 (2011) 25–34.
- A. Lateef, M.N. Chaudhry, S. Ilyas, Biological treatment of
dairy wastewater using activated sludge, Sci. Asia, 39 (2013)
179–185.
- M.H. Al-Malack, Determination of biokinetic coefficient of
an immersed membrane bioreactor, J. Membr. Sci., 271 (2006)
47–58.
- M. Hadei, M. Aalipour, A. Fatehizadeh, H.R. Safavi,
M. Ghasemian, A.R. Sahbaei, S.M. Mousavi, M.A. Zadeh,
M.M. Amin, Determination of biokinetic coefficient for an
adsorption/biooxidation process on municipal wastewater
treatment, Int. J. Environ. Health Eng., 4 (2015) 1–6.
- N.B. Prakash, Biokinetic studies in the treatment of tannery
effluent, J. Sustainable Dev., 6 (2013) 89–97.
- M.A. Dytczak, K.L. Londry, J.A. Oleszkiewicz, Nitrifying
genera in activated sludge may influence nitrification rates,
Water Environ. Res., 80 (2008) 388–396.
- F.M.E. Emerald, D. Prasad, M.R. Ravindra, H. Pushpadass,
Performance and biomass kinetics of activated sludge system
treating dairy wastewater, Int. J. Dairy Technol., 65 (2012)
609–615.
- L.D. Benefield, C.W. Randall, Biological Process Design for
Wastewater Treatment, Prentice-Hall Inc., New Jersey, 1980.
- M. Henze, P. Harremoes, J.C. Jansen, E. Arvin, Wastewater
Treatment: Biological and Chemical Processes, Springer, Verlag-
Berlin, 1997, pp. 56–112.
- A. Pala, Ö. Bölükbaş, Evaluation of kinetic parameters for
biological CNP removal from a municipal wastewater through
batch tests, Process Biochem., 40 (2005) 629–635.
- U. Wiesmann, I.S. Choi, E.M. Dombrowski, Fundamentals
of Biological Wastewater Treatment, Wiley-VCH Verlag,
Weinheim, 2007.
- A.F. Gaudy, E.T. Gaudy, Advances in Biochemical Engineering,
Springer, Verlag, Berlin, 1972, pp. 97–143.
- Z. Shen, W.B. Arbuckle, Estimating biokinetic coefficients in the
PACT™ system, J. Environ. Manage., 167 (2016) 66–74.