References

  1. L. Hui, Y. Zhang, I. Kravchenko, Dynamic changes in microbial activity and community structure during biodegradation of petroleum compounds: a laboratory experiment, J. Environ. Sci., 19 (2007) 1003–1013.
  2. S.J. Varjani, Microbial degradation of petroleum hydrocarbons, Bioresour. Technol., 223 (2016) 277–286.
  3. M.P. Suarez, H.S. Rifai, Biodegradation rates for fuel hydrocarbons and chlorinated solvents in groundwater, Biorem. J., 3 (1999) 337–362.
  4. D. Li, D.Y. Lyon, Q. Li, Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension, Environ. Toxicol. Chem., 27 (2008) 1888–1894.
  5. A. Worrich, H. Stryhanyuk, N. Musat, Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments, Nat. Commun., 8 (2017) 15472.
  6. Z.G. Wang, Y.L. Bi, B. Jiang, Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China, Sci. Rep., 6 (2016) 34336.
  7. J.M. Choo, L.E. Leong, G.B. Rogers, Sample storage conditions significantly influence faecal microbiome profiles, Sci. Rep., 5 (2015) 16350.
  8. J. O’toole, M. Sinclair, M. Malawaraarachchi, Microbial quality assessment of household greywater, Water Res., 46 (2012) 4301–4313.
  9. M. Uchida, W. Mo, T. Nakatsubo, Microbial activity and litter decomposition under snow cover in a cool-temperate broadleaved deciduous forest, Agric. For. Meteorol., 134 (2005) 102–109.
  10. B.B. Jensen, H. Jørgensen, Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs, Appl. Environ. Microbiol., 60 (1994) 1897–1904.
  11. N. Lembert, L. Idahl, Regulatory effects of ATP and luciferin on firefly luciferase activity, Biochem. J., 305 (1995) 929–933.
  12. A. Lundin, Use of firefly luciferase in ATP-related assays of biomass, enzymes, and metabolites, Methods Enzymol., 305 (2000) 346–370.
  13. A. Corbitt, N. Bennion, S. Forsythe, Adenylate kinase amplification of ATP bioluminescence for hygiene monitoring in the food and beverage industry, Lett. Appl. Microbiol., 30 (2000) 443–447.
  14. E. Delahaye, B. Welte, Y. Levi, An ATP-based method for monitoring the microbiological drinking water quality in a distribution network, Water Res., 37 (2003) 3689–3696.
  15. M. Abelho, Extraction and Quantification of ATP as a Measure of Microbial Biomass, Methods to Study Litter Decomposition, Springer, 2005, pp. 223–229.
  16. H. Eydal, K. Pedersen, Use of an ATP assay to determine viable microbial biomass in Fennoscandian Shield groundwater from depths of 3–1000 m, J. Microbiol. Methods, 70 (2007) 363–373.
  17. C. Grøn, J. Tørsløv, H.J. Albrechtsen, Biodegradability of dissolved organic carbon in groundwater from an unconfined aquifer, Sci. Total Environ., 117 (1992) 241–251.
  18. H. Wu, W. Wu, Z. Chen, Highly sensitive pyrosequencing based on the capture of free adenosine 5' phosphosulfate with adenosine triphosphate sulfurylase, Anal. Chem., 83 (2011) 3600–3605.
  19. K. Ito, K. Nakagawa, S. Murakami, Highly sensitive simultaneous bioluminescent measurement of acetate kinase and pyruvate phosphate dikinase activities using a firefly luciferase-luciferin reaction and its application to a tandem bioluminescent enzyme immunoassay, Anal. Sci. Int. J. Jpn. Soc. Anal. Chem., 19 (2003) 105–109.
  20. ATP Fluorescent Test Swab with Sampling Straw: China, CN205786322U, 2017.
  21. M.A. Chowdhury, K.N. Islam, N. Hafiz, K. Islam, Diversity of trees in a community managed forest: the case of Komolchori VCF, Khagrachari, Bangladesh, Geol. Ecol. Landscapes, 3 (2019) 95–103.
  22. M. Kamal, R. Younas, M. Zaheer, M. Shahid, Treatment of municipal waste water through adsorption using different waste biomass as activated carbon, J. Clean WAS, 3 (2019) 21–27.
  23. O. Adegbuyi, A.C. Ogunyele, O.M. Akinyemi, Petrology and geochemistry of basement gneissic rocks around Oka-Akoko, South-western Nigeria, Malaysian J. Geosci., 2 (2018) 11–16.
  24. K. Abdul Halim, E.L. Yong, Integrating two-stage up-flow anaerobic sludge blanket with a single-stage aerobic packedbed reactorfor raw palm oil mill effluent treatment, Water Conserv. Manage., 2 (2018) 1–4.
  25. Y. Rajendran, R. Mohsin, Emission due to motor gasoline fuel in reciprocating lycoming O-320 engine in comparison to aviation gasoline fuel, Environ. Ecosyst. Sci., 2 (2018) 20–24.
  26. Z. Ning, M. Zhang, Z. He, Spatial pattern of bacterial community diversity formed in different groundwater field corresponding to electron donors and acceptors distributions at a petroleumcontaminated site, Water, 10 (2018) 842.
  27. Z. Liu, D. Zhang, W. Peng, A novel ANFIS-PSO network for forecasting oil flocculated asphaltene weight percentage at wide range of operation conditions, Pet. Sci. Technol., 36 (2018) 1044–1050.
  28. GB/T 4789.2–2008, Microbiological Examination of Food Hygiene-Aerobic Plate Count, PRC Hygiene Ministry, 2008.
  29. S.S. Lam, A.D. Russell, H.A. Chase, Microwave pyrolysis, a novel process for recycling waste automotive engine oil, Energy, 35 (2010) 2985–2991.
  30. G. Manfredi, L. Yang, C.D. Gajewski, Measurements of ATP in mammalian cells, Methods, 26 (2002) 317–326.
  31. F. Zogul, K.D.A. Taylor, P.C. Quantick, A rapid HPLCdetermination of ATP-related compounds and its application to herring stored under modified atmosphere, Int. J. Food Sci. Technol., 35 (2000) 549–554.
  32. L. Mora, A.S. Hernández-Cázares, M.C. Aristoy, Hydrophilic interaction chromatographic determination of adenosine triphosphate and its metabolites, Food Chem., 123 (2010) 1282–1288.
  33. N.C. Yang, W.M. Ho, Y.H. Chen, A convenient one-step extraction of cellular ATP using boiling water for the luciferinluciferase assay of ATP, Anal. Biochem., 306 (2002) 323–7.
  34. F. Hammes, M. Berney, M. Wang, Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes, Water Res., 42 (2008) 269–277.
  35. F. Yoshihito, K. Mieko, M. Koji, Sensitive detection of bacteria and spores using a portable bioluminescence ATP measurement assay system distinguishing from white powder materials, J. Health Sci., 50 (2004) 126–132.
  36. O.K. Vang, C.B. Corfitzen, C. Smith, Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water, Water Res., 64 (2014) 309–320.
  37. T. Satoh, J. Kato, N. Takiguchi, ATP amplification for ultrasensitive bioluminescence assay: detection of a single bacterial cell, Biosci. Biotechnol., Biochem., 68 (2004) 1216–1220.
  38. J. Marxsen, Investigations into the number of respiring bacteria in groundwater from sandy and gravelly deposits, Microbial Ecol., 16 (1988) 65–72.
  39. B. Luef, K.R. Frischkorn, K.C. Wrighton, Diverse uncultivated ultra-small bacterial cells in groundwater, Nat. Commun., 6 (2015) 6372.