References

  1. H. Muthukumar, A. Gire, M. Kumari, M. Manickam, Biogenic synthesis of nano-biomaterial for toxic naphthalene photocatalytic degradation optimization and kinetics studies, Int. Biodeterior. Biodegrad., 119 (2017) 587–594.
  2. T. Rengarajan, P. Rajendran, N. Nandakumar, B. Lokeshkumar, P. Rajendran, I. Nishigaki, Exposure to polycyclic aromatic hydrocarbons with special focus on cancer, Asian Pac. J. Trop. Biomed., 5 (2015) 182–189.
  3. C. Liu, L. Zhang, R. Liu, Z. Gao, X. Yang, Z. Tu, F. Yang, Z. Ye, L. Cui, C. Xu, Y. Li, Hydrothermal synthesis of N-doped TiO2 nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties, J. Alloys Compd., 656 (2016) 24–32.
  4. F.Y. Griego, K.T. Bogen, P.S. Price, D.L. Weed, Exposure, epidemiology and human cancer incidence of naphthalene, Regul. Toxicol. Pharmacol., 51 (2008) 22–26.
  5. K.H. Kim, S.A. Jahan, E. Kabir, R.J.C. Brown, A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects, Environ. Int., 60 (2013) 71–80.
  6. S. Baran, P. Oleszczuk, E. Baranowska, Degradation of soil environment in the post-flooding area: content of polycyclic aromatic hydrocarbons (PAHs) and S-triazine herbicides, J. Environ. Sci. Health Part B, 38 (2003) 799–812.
  7. W.F.M. Röling, I.M. Head, S.R. Larter, The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects, Res. Microbiol., 154 (2003) 321–328.
  8. S. Guha, C.A. Peters, P.R. Jaffé, Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures, Biotechnol. Bioeng., 65 (1999) 491–499.
  9. A. Rubio-Clemente, R.A. Torres-Palma, G.A. Peñuela, Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review, Sci. Total Environ., 478 (2014) 201–225.
  10. R. Raei, M. Ebnali-Heidari, H. Saghaei, Supercontinuum generation in organic liquid–liquid core-cladding photonic crystal fiber in visible and near-infrared regions: publisher’s note, J. Opt. Soc. Am. B, 35 (2018) 1545.
  11. H.K. Bojes, P.G. Pope, Characterization of EPA’s 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas, Regul. Toxicol. Pharmacol., 47 (2007) 288–295.
  12. A.M.J. Law, M.D. Aitken, Bacterial chemotaxis to naphthalene desorbing from a nonaqueous liquid, Appl. Environ. Microbiol., 69 (2003) 5968–5973.
  13. H. Gupta, B. Gupta, Adsorption of polycyclic aromatic hydrocarbons on banana peel activated carbon, Desal. Water Treat., 57 (2016) 9498–9509.
  14. S. Paria, P.K. Yuet, Adsorption of non-ionic surfactants onto sand and its importance in naphthalene removal, Ind. Eng. Chem. Res., 46 (2007) 108–113.
  15. L. Devi, K.J. Ptasinski, F.J.J.G. Janssen, Pretreated olivine as tar removal catalyst for biomass gasifiers: investigation using naphthalene as model biomass tar, Fuel Process. Technol., 86 (2005) 707–730.
  16. T. Benabdallah El-Hadj, J. Dosta, R. Márquez-Serrano, J. MataÁlvarez, Effect of ultrasound pretreatment in mesophilic and thermophilic anaerobic digestion with emphasis on naphthalene and pyrene removal, Water Res., 41 (2007) 87–94.
  17. K.J. Rockne, S.E. Strand, Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture, Water Res., 35 (2001) 291–299.
  18. S. Lamichhane, K.C. Bal Krishna, R. Sarukkalige, Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review, Chemosphere, 148 (2016) 336–353.
  19. B. Ma, X. Lv, Y. He, J. Xu, Assessing adsorption of polycyclic aromatic hydrocarbons on Rhizopus oryzae cell wall components with water-methanol cosolvent model, Ecotoxicol. Environ. Saf., 125 (2016) 55–60.
  20. C.H. Chiou, R.S. Juang, Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles, J. Hazard. Mater., 149 (2007) 1–7.
  21. G. Laera, B. Jin, H. Zhu, A. Lopez, Photocatalytic activity of TiO2 nanofibers in simulated and real municipal effluents, Catal. Today, 161 (2011) 147–152.
  22. C.O. Ania, T.J. Bandosz, Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene, Langmuir, 21 (2005) 7752–7759.
  23. E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, USA, 2012.
  24. B. Latkowska, J. Figa, Cyanide removal from industrial wastewaters, J. Environ. Stud., 16 (2007) 148–152.
  25. S. Murgolo, F. Petronella, R. Ciannarella, R. Comparelli, A. Agostiano, M.L. Curri, G. Mascolo, UV and solar-based photocatalytic degradation of organic pollutants by nano-sized TiO2 grown on carbon nanotubes, Catal. Today, 240 (2015) 114–124.
  26. H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, M. Hasnain Isa, Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review, J. Ind. Eng. Chem., 26 (2015) 1–36.
  27. H. Saghaei, M. Ebnali-Heidari, M.K. Moravvej-Farshi, Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers, Appl. Opt., 54 (2015) 2072–2079.
  28. H. Saghaei, M.K. Moravvej-Farshi, M. Ebnali-Heidari, M.N. Moghadasi, Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: solid core PCF versus SIF, IEEE J. Sel. Top. Quantum Electron., 22 (2016).
  29. H. Saghaei, Dispersion-engineered microstructured optical fiber for mid-infrared supercontinuum generation, Appl. Opt., 57 (2018) 5591–5598.
  30. M. Ebnali-Heidari, H. Saghaei, F. Koohi-Kamali, M. Naser Moghadasi, M.K. Moravvej-Farshi, Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers, IEEE J. Sel. Top. Quantum Electron., 20 (2014) 582–589.
  31. H. Saghaei, V. Heidari, M. Ebnali-Heidari, M.R. Yazdani, A systematic study of linear and nonlinear properties of photonic crystal fibers, Optik, 127 (2016) 11938–11947.
  32. J.A. Pedraza-Avella, P. Acevedo-Peña, J.E. Pedraza-Rosas, Photocatalytic oxidation of cyanide on TiO2: an electrochemical approach, Catal. Today, 133–135 (2008) 611–618.
  33. R.M. Mohamed, I.A. Mkhalid, The effect of rare earth dopants on the structure, surface texture and photocatalytic properties of TiO2-SiO2 prepared by sol-gel method, J. Alloys Compd., 501 (2010) 143–147.
  34. M. Kalantari, A. Karimkhani, H. Saghaei, Ultra-wide mid-IR supercontinuum generation in As2S3 photonic crystal fiber by rods filling technique, Optik, 158 (2018) 142–151.
  35. H. Saghaei, Supercontinuum source for dense wavelength division multiplexing in square photonic crystal fiber via fluidic infiltration approach, Radioengineering, 26 (2017) 16–22.
  36. A. Bozzi, I. Guasaquillo, J. Kiwi, Accelerated removal of cyanides from industrial effluents by supported TiO2 photo-catalysts, Appl. Catal., B, 51 (2004) 203–211.
  37. J. Fan, Z. Zhao, W. Liu, Y. Xue, S. Yin, Solvothermal synthesis of different phase N-TiO2 and their kinetics, isotherm and thermodynamic studies on the adsorption of methyl orange, J. Colloid Interface Sci., 470 (2016) 229–236.
  38. X.F. Lei, X.X. Xue, H. Yang, C. Chen, X. Li, J.X. Pei, M.C. Niu, Y.T. Yang, X.Y. Gao, Visible light-responded C, N and S co-doped anatase TiO2 for photocatalytic reduction of Cr(VI), J. Alloys Compd., 646 (2015) 541–549.
  39. A. Khalilzadeh, S. Fatemi, Modification of nano-TiO2 by doping with nitrogen and fluorine and study acetaldehyde removal under visible light irradiation, Clean Technol. Environ. Policy, 16 (2014) 629–636.
  40. R. Fagan, D.E. McCormack, S. Hinder, S.C. Pillai, Improved high temperature stability of anatase TiO2 photocatalysts by N, F, P co-doping, Mater. Des., 96 (2016) 44–53.
  41. K.P. Priyanka, V.R. Revathy, P. Rosmin, B. Thrivedu, K.M. Elsa, J. Nimmymol, K.M. Balakrishna, T. Varghese, Influence of la doping on structural and optical properties of TiO2 nanocrystals, Mater. Charact., 113 (2016) 144–151.
  42. E.G. Villabona-Leal, J.P. López-Neira, J.A. Pedraza-Avella, E. Pérez, O. Meza, Screening of factors influencing the photocatalytic activity of TiO2:Ln (Ln = La, Ce, Pr, Nd, Sm, Eu and Gd) in the degradation of dyes, Comput. Mater. Sci., 107 (2015) 48–53.
  43. L. Elsellami, H. Lachheb, A. Houas, Synthesis, characterization and photocatalytic activity of Li-, Cd-, and La-doped TiO2, Mater. Sci. Semicond. Process., 36 (2015) 103–114.
  44. L. Yu, X. Yang, J. He, Y. He, D. Wang, Synthesis of magnetically separable N, La-doped TiO2 with enhanced photocatalytic activity, Sep. Purif. Technol., 144 (2015) 107–113.
  45. L. Yu, X. Yang, J. He, Y. He, D. Wang, One-step hydrothermal method to prepare nitrogen and lanthanum co-doped TiO2 nanocrystals with exposed {0 0 1} facets and study on their photocatalytic activities in visible light, J. Alloys Compd., 637 (2015) 308–314.
  46. J. Zhang, L.J. Xu, Z.Q. Zhu, Q.J. Liu, Synthesis and properties of (Yb, N)-TiO2 photocatalyst for degradation of methylene blue (MB) under visible light irradiation, Mater. Res. Bull., 70 (2015) 358–364.
  47. A. Ghanbari, A. Kashaninia, A. Sadr, H. Saghaei, Supercontinuum generation with femtosecond optical pulse compression in silicon photonic crystal fibers at 2500 nm, Opt. Quantum Electron., 50 (2018) 411–422.
  48. H. Saghaei, A. Ghanbari, White light generation using photonic crystal fiber with sub-micron circular lattice, J. Electr. Eng., 68 (2017) 282–289.
  49. A. Ghanbari, A. Kashani Nia, A. Sadr, H. Saghaei, A comparative study of multipole and empirical relations methods for effective index and dispersion calculations of silica-based photonic crystal fibers, J. Commun. Eng., 8 (2019) 98–109.
  50. P. Nickels, H. Zhou, S.N. Basahel, A.Y. Obaid, T.T. Ali, A.A. Al-Ghamdi, E.S.H. El-Mossalamy, A.O. Alyoubi, S.A. Lynch, Laboratory scale water circuit including a photocatalytic reactor and a portable in-stream sensor to monitor pollutant degradation, Ind. Eng. Chem. Res., 51 (2012) 3301–3308.
  51. G. Odling, Z.Y. Pong, G. Gilfillan, C.R. Pulham, N. Robertson, Bismuth titanate modified and immobilized TiO2 photocatalysts for water purification: broad pollutant scope, ease of re-use and mechanistic studies, Environ. Sci. Water Res. Technol., 4 (2018) 2170–2178.
  52. X. Meng, Z. Zhang, Experimental analysis of a photoreactor packed with Pd-BiVO4-coated glass beads, AIChE J., 65 (2019) 132–139.
  53. H. Saghaei, V. Van, Broadband mid-infrared supercontinuum generation in dispersion-engineered silicon-on-insulator waveguide, J. Opt. Soc. Am. B, 36 (2019) A193–A202.
  54. M.A. Rauf, M.A. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals, Desalination, 276 (2011) 13–27.
  55. C.D. Theerakarunwong, S. Phanichphant, Visible-light-induced photocatalytic degradation of PAH-contaminated soil and their pathways by Fe-doped TiO2 nanocatalyst, Water Air Soil Pollut., (2018) 291–229.
  56. O.T. Woo, W.K. Chung, K.H. Wong, A.T. Chow, P.K. Wong, Photocatalytic oxidation of polycyclic aromatic hydrocarbons: intermediates identification and toxicity testing, J. Hazard. Mater., 168 (2009) 1192–1199.
  57. B.J. McConkey, L.M. Hewitt, D.G. Dixon, B.M. Greenberg, Natural sunlight induced photooxidation of naphthalene in aqueous solution, Water Air Soil Pollut., 136 (2002) 347–359.
  58. E.S. Baeissa, Synthesis and characterization of sulfur-titanium dioxide nanocomposites for photocatalytic oxidation of cyanide using visible light irradiation, Chin. J. Catal., 36 (2015) 698–704.
  59. F. Mohammadi-Moghadam, M. Sadeghi, N. Masoudipour, Degradation of cyanide using stabilized S, N-TiO2 nanoparticles by visible and sun light, J. Adv. Oxid. Technol., 21 (2018) 274–284.
  60. M. Farrokhi, J.K. Yang, S.M. Lee, M. Shirzad-Siboni, Effect of organic matter on cyanide removal by illuminated titanium dioxide or zinc oxide nanoparticles, J. Environ. Health Sci. Eng., 11 (2013) 23.
  61. R. Abu-Elella, M.E. Ossman, M. Abd-Elfatah, A. Elgendi, Kinetic modeling and isotherm study for naphthalene adsorption on boehmite nanopowder, Desal. Water Treat., 51 (2013) 3472–3481.
  62. M. Abouseoud, A. Yataghene, A. Amrane, R. Maachi, Effect of pH and salinity on the emulsifying capacity and naphthalene solubility of a biosurfactant produced by Pseudomonas fluorescens, J. Hazard. Mater., 180 (2010) 131–136.
  63. A.A. Tabrizi, A. Pahlavan, Efficiency improvement of a siliconbased thin-film solar cell using plasmonic silver nanoparticles and an antireflective layer, Opt. Commun., 454 (2020) 124437.
  64. V. Mahmoodi, J. Sargolzaei, Photocatalytic abatement of naphthalene catalyzed by nanosized TiO2 particles: assessment of operational parameters, Theor. Found. Chem. Eng., 48 (2014) 656–666.
  65. M. Sathish, R.P. Viswanath, C.S. Gopinath, N,S-Co-doped TiO2 nanophotocatalyst: synthesis, electronic structure and photocatalysis, J. Nanosci. Nanotechnol., 9 (2009) 423–432.
  66. A. Brindha, T. Sivakumar, Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes, J. Photochem. Photobiol. A, 340 (2017) 146–156.
  67. Y.H. Lin, H.T. Hsueh, C.W. Chang, H. Chu, The visible lightdriven photodegradation of dimethyl sulfide on S-doped TiO2: characterization, kinetics, reaction pathways, Appl. Catal., B, 199 (2016) 1–10.
  68. D. Liu, Z. Wu, X. Ge, G. Cravotto, Z. Wu, Y. Yan, Comparative study of naphthalene adsorption on activated carbon prepared by microwave-assisted synthesis from different typical coals in Xinjiang, J. Taiwan Inst. Chem. Eng., 59 (2016) 563–568.
  69. B. Qiu, M. Xing, J. Zhang, Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries, J. Am. Chem. Soc., 136 (2014) 5852–5855.
  70. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study, J. Sol-Gel Sci. Technol., 61 (2012) 1–7.
  71. Sutisna, M. Rokhmat, E. Wibowo, Khairurrijal, M. Abdullah, Prototype of a flat-panel photoreactor using TiO2 nanoparticles coated on transparent granules for the degradation of Methylene Blue under solar illumination, Sustainable Environ. Res., 27 (2017) 172–180.
  72. N. Masoudipour, M. Sadeghi, F. Mohammadi-Moghadam, Photo-catalytic inactivation of E. coli using stabilized Ag/S, N-TiO2 nanoparticles by fixed bed photo-reactor under visible light and sunlight, Desal. Water Treat.m 110 (2018) 109–116.
  73. J. Wang, H. Li, H. Li, C. Zou, Mesoporous TiO2-xAy (A = N, S) as a visible-light-response photocatalyst, Solid State Sci., 12 (2010) 490–497.
  74. F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, N. Serpone, TiO2-assisted photodegradation of dye pollutants II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation, Appl. Catal., B, 15 (1998) 147–156.
  75. X. Quan, X. Zhao, S. Chen, H. Zhao, J. Chen, Y. Zhao, Enhancement of p,p'-DDT photodegradation on soil surfaces using TiO2 induced by UV-light, Chemosphere, 60 (2005) 266–273.
  76. H. Zhao, S. Xu, J. Zhong, X. Bao, Kinetic study on the photocatalytic degradation of pyridine in TiO2 suspension systems, Catal. Today, 93–95 (2004) 857–861.
  77. S. Chaudhary, P. Sharma, A. Kaur, R. Kumar, S.K. Mehta, Surfactant coated silica nanoparticles as smart scavengers for adsorptive removal of naphthalene, J. Nanosci. Nanotechnol., 18 (2017) 3218–3229.
  78. D. Avisar, Y. Lester, H. Mamane, pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water, J. Hazard. Mater., 175 (2010) 1068–1074.
  79. A.G. Rincón, C. Pulgarin, Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: implications in solar water disinfection, Appl. Catal., B, 51 (2004) 283–302.
  80. J.M. Pettibone, D.M. Cwiertny, M. Scherer, V.H. Grassian, Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, nanoparticle aggregation, Langmuir, 24 (2008) 6659–6667.
  81. M. Muruganandham, M. Swaminathan, Advanced oxidative decolourisation of Reactive Yellow 14 azo dye by UV/TiO2, UV/H2O2, UV/H2O2/Fe2+ processes - A comparative study, Sep. Purif. Technol., 48 (2006) 297–303.
  82. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature, 453 (2008) 638–641.
  83. L. Yang, X. Qian, Z. Wang, Y. Li, H. Bai, H. Li, Steel slag as low-cost adsorbent for the removal of phenanthrene and naphthalene, Adsorpt. Sci. Technol., 36 (2018) 1160–1177.
  84. P. Das, S. Goswami, S. Maity, Removal of naphthalene present in synthetic waste water using novel G/GO nano sheet synthesized from rice straw: comparative analysis, isotherm and kinetics, Front. Nanosci. Nanotechnol., 2 (2016) 38–42.
  85. J. Kamalakkannan, V.L. Chandraboss, S. Prabha, S. Senthilvelan, Activated carbon loaded N, S co-doped TiO2 nanomaterial and its dye wastewater treatment, Int. Lett. Chem. Phys. Astron., 47 (2015) 147–164.
  86. M.J. García-Martínez, L. Canoira, G. Blázquez, I. Da Riva, R. Alcántara, J.F. Llamas, Continuous photode,gradation of naphthalene in water catalyzed by TiO2 supported on glass Raschig rings, Chem. Eng. J., 110 (2005) 123–128.
  87. L. Hykrdová, J. Jirkovský, G. Mailhot, M. Bolte, Fe(III) photoinduced and Q-TiO2 photocatalysed degradation of naphthalene: comparison of kinetics and proposal of mechanism, J. Photochem. Photobiol. A, 151 (2002) 181–193.