References
- M. Tagliabue, A.P. Reverberi, R. Bagatin, Boron removal from
water: needs, challenges, and perspectives, J. Cleaner Prod.,
77 (2014) 56–64.
- M.A. Al-Ghouti, N.R. Salih, Application of eggshell wastes for
boron remediation from water, J. Mol. Liq., 256 (2018) 599–610.
- Z. Guan, J. Lv, P. Bai, X. Guo, Boron removal from aqueous
solutions by adsorption—a review, Desalination, 383 (2016)
29–37.
- O.C. Türker, J. Vymazal, C. Türe, Constructed wetlands for
boron removal: a review, Ecol. Eng., 64 (2014) 350–359.
- M.Al. Haddabi, M. Ahmed, Z.Al. Jebri, H. Vuthaluru, H. Znad,
M.Al. Kindi, Boron removal from seawater using date palm
(Phoenix dactylifera) seed ash, Desal. Water Treat., 57 (2016)
5130–5137.
- G. Zelmanov, R. Semiat, Boron removal from water and its
recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles
(NanoFe) and NanoFe-impregnated granular activated carbon
as adsorbent, Desalination, 333 (2014) 107–117.
- M. Bodzek, The removal of boron from the aquatic environment –
state of the art, Desal. Water Treat., 57 (2016) 1107–1131.
- J. Wolska, M. Bryjak, Methods for boron removal from aqueous
solutions—a review, Desalination, 310 (2013) 18–24.
- V. Masindi, M.W. Gitari, H. Tutu, M. Debeer, Removal of boron
from aqueous solution using magnesite and bentonite claycomposite,
Desal. Water Treat., 57 (2016) 8754–8764.
- T. Chen, Q. Wang, J. Lyu, P. Bai, X. Guo, Boron removal and
reclamation by magnetic magnetite (Fe3O4) nanoparticle: an
adsorption and isotopic separation study, Sep. Purif. Technol.,
231 (2020) 115930.
- J. Kluczka, W. Pudło, K. Krukiewicz, Boron adsorption removal
by commercial and modified activated carbons, Chem. Eng.
Res. Des., 147 (2019) 30–42.
- S. Yu, H. Xue, Y. Fan, R. Shi, Synthesis, characterization of
salicylic-HCHO polymeric resin and its evaluation as a boron
adsorbent, Chem. Eng. J., 219 (2013) 327–334.
- E. Babiker, M.A. Al-Ghouti, N. Zouari, G. McKay, Removal of
boron from water using adsorbents derived from waste tire
rubber, J. Environ. Chem. Eng., 7 (2019) 102948.
- I. Mohmood, C.B. Lopes, I. Lopes, I. Ahmad, A.C. Duarte,
E. Pereira, Nanoscale materials and their use in water
contaminants removal—a review, Environ. Sci. Pollut. Res.,
20 (2013) 1239–1260.
- S. Mahdavi, D. Akhzari, The removal of phosphate from
aqueous solutions using two nano-structures: copper oxide and
carbon tubes, Clean Technol. Environ Policy, 18 (2016) 817–827.
- S. Mahdavi, P. Molodi, M. Zarabi, Functionalized MgO, CeO2,
and ZnO nanoparticles with humic acid for the study of nitrate
adsorption efficiency from water, Res. Chem. Intermed.,
44 (2018) 543–562.
- M. Verma, I. Tyagi, R. Chandra, V.K. Gupta, Adsorptive removal
of Pb(II) ions from aqueous solution using CuO nanoparticles
synthesized by sputtering method, J. Mol. Liq., 225 (2017)
936–944.
- S. Mahdavi, M. Jalali, A. Afkhami, Removal of heavy metals from
aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles,
J. Nanopart. Res., 14 (2012) 171–188.
- A. Chakraborty, D.A. Islam, H. Acharya, Facile synthesis of
CuO nanoparticles deposited zeolitic imidazolate frameworks
(ZIF-8) for efficient photocatalytic dye degradation, J. Solid
State Chem., 269 (2019) 566–574.
- J.W. Kim, C.S. Ki, I.C. Um, Y.H. Park, A facile fabrication method
and the boosted adsorption and photodegradation activity of
CuO nanoparticles synthesized using a silk fibroin template,
J. Ind. Eng. Chem., 56 (2017) 335–341.
- V.K. Gupta, R. Chandra, I. Tyagi, M. Verma, Removal of
hexavalent chromium ions using CuO nanoparticles for water
purification applications, J. Colloid Interface Sci., 478 (2016)
54–62.
- P. Nuengmatcha, P. Porrawatkul, S. Chanthai, P. Sricharoen,
N. Limchoowong, Enhanced photocatalytic degradation of
Methylene blue using Fe2O3/graphene/CuO nanocomposites
under visible light, J. Environ. Chem. Eng., 7 (2019) 103438.
- I. Jacukowicz-Sobala, D. Ociński, P. Mazur, E. Stanisławska,
E. Kociołek-Balawejder, Evaluation of hybrid anion exchanger
containing cupric oxide for As(III) removal from water,
J. Hazard. Mater., 370 (2019) 117–125.
- D.L. Sparks, A. Le Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour,
M.A. Tabatabai, C.T. Johnston, M.E. Sumner, Methods
of Soil Analysis. Part 3-Chemical Methods, Soil Science Society
of America Inc., Madison, Wis., 1996.
- S. Mahdavi, N. Amini, The role of bare and modified nano
nickel oxide as efficient adsorbents for the removal of Cd2+, Cu2+,
and Ni2+ from aqueous solution, Environ. Earth Sci., 75 (2016)
1468.
- S. Mahdavi, N. Amini, H. Merrikhpour, D. Akhzari, Characterization
of bare and modified nano-zirconium oxide (ZrO2)
and their applications as adsorbents for the removal of bivalent
heavy metals, Korean J. Chem. Eng., 34 (2017) 234–244.
- H.K. Moghaddam, M. Pakizeh, Experimental study on
mercury ions removal from aqueous solution by MnO2/CNTs
nanocomposite adsorbent, J. Ind. Eng. Chem., 21 (2015) 221–229.
- V.V.T. Padil, M. Černík, Green synthesis of copper oxide
nanoparticles using gum karaya as a biotemplate and their
antibacterial application, Int. J. Nanomed., 8 (2013) 889.
- O.C. Türker, T. Baran. Evaluation and application of an
innovative method based on various chitosan composites and
Lemna gibba for boron removal from drinking water, Carbohydr.
Polym., 166 (2017) 209–218.
- N.B. Darwish, V. Kochkodan, N. Hilal, Boron removal from
water with fractionized amberlite IRA743 resin, Desalination,
370 (2015) 1–6.
- A. Kurniawan, S. Ismadji. Potential utilization of Jatropha
curcas L. press-cake residue as new precursor for activated
carbon preparation: application in Methylene blue removal
from aqueous solution, J. Taiwan Inst. Chem. Eng., 42 (2011)
826–836.
- S.K. Theydan, M.J. Ahmed, Adsorption of Methylene blue
onto biomass-based activated carbon by FeCl3 activation:
equilibrium, kinetics, and thermodynamic studies, J. Anal.
Appl. Pyrolysis, 97 (2012) 116–122.
- J. Lyu, N. Zhang, H. Liu, Z. Zeng, J. Zhang, P. Bai, X. Guo,
Adsorptive removal of boron by zeolitic imidazolate
framework: kinetics, isotherms, thermodynamics, mechanism,
and recycling, Sep. Purif. Technol., 187 (2017) 67–75.
- N. Kataria, V. Garg, Optimization of Pb(II) and Cd(II)
adsorption onto ZnO nanoflowers using central composites
design: isotherms and kinetics modeling, J. Mol. Liq., 271 (2018)
228–239.
- E. Goli, R. Rahnemaie, T. Hiemstra, M.J. Malakouti, The
interaction of boron with goethite: experiments and CD–MUSIC
modelling, Chemosphere, 82 (2011) 1475–1481.
- M. Kehal, L. Reinert, L. Duclaux, Characterization and boron
adsorption capacity of vermiculite modified by thermal shock
or H2O2 reaction and/or sonication, Appl. Clay Sci., 48 (2010)
561–568.
- S. Seyhan, Y. Seki, M. Yurdakoc, M. Merdivan, Application of
iron-rich natural clays in Camlica, Turkey for boron sorption
from water and its determination by fluorimetric-azomethine-H
method, J. Hazard. Mater., 146 (2007) 180–185.
- C.B. Tabelin, T. Igarashi, T. Arima, D. Sato, T. Tatsuhara,
S. Tamoto, Characterization and evaluation of arsenic and
boron adsorption onto natural geologic materials, and their
application in the disposal of excavated altered rock, Geoderma,
213 (2014) 163–172.
- İ. Kıpçak, M. Özdemir, Removal of boron from aqueous
solution using calcined magnesite tailing, Chem. Eng. J.,
189 (2012) 68–74.