References

  1. M. Tagliabue, A.P. Reverberi, R. Bagatin, Boron removal from water: needs, challenges, and perspectives, J. Cleaner Prod., 77 (2014) 56–64.
  2. M.A. Al-Ghouti, N.R. Salih, Application of eggshell wastes for boron remediation from water, J. Mol. Liq., 256 (2018) 599–610.
  3. Z. Guan, J. Lv, P. Bai, X. Guo, Boron removal from aqueous solutions by adsorption—a review, Desalination, 383 (2016) 29–37.
  4. O.C. Türker, J. Vymazal, C. Türe, Constructed wetlands for boron removal: a review, Ecol. Eng., 64 (2014) 350–359.
  5. M.Al. Haddabi, M. Ahmed, Z.Al. Jebri, H. Vuthaluru, H. Znad, M.Al. Kindi, Boron removal from seawater using date palm (Phoenix dactylifera) seed ash, Desal. Water Treat., 57 (2016) 5130–5137.
  6. G. Zelmanov, R. Semiat, Boron removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles (NanoFe) and NanoFe-impregnated granular activated carbon as adsorbent, Desalination, 333 (2014) 107–117.
  7. M. Bodzek, The removal of boron from the aquatic environment – state of the art, Desal. Water Treat., 57 (2016) 1107–1131.
  8. J. Wolska, M. Bryjak, Methods for boron removal from aqueous solutions—a review, Desalination, 310 (2013) 18–24.
  9. V. Masindi, M.W. Gitari, H. Tutu, M. Debeer, Removal of boron from aqueous solution using magnesite and bentonite claycomposite, Desal. Water Treat., 57 (2016) 8754–8764.
  10. T. Chen, Q. Wang, J. Lyu, P. Bai, X. Guo, Boron removal and reclamation by magnetic magnetite (Fe3O4) nanoparticle: an adsorption and isotopic separation study, Sep. Purif. Technol., 231 (2020) 115930.
  11. J. Kluczka, W. Pudło, K. Krukiewicz, Boron adsorption removal by commercial and modified activated carbons, Chem. Eng. Res. Des., 147 (2019) 30–42.
  12. S. Yu, H. Xue, Y. Fan, R. Shi, Synthesis, characterization of salicylic-HCHO polymeric resin and its evaluation as a boron adsorbent, Chem. Eng. J., 219 (2013) 327–334.
  13. E. Babiker, M.A. Al-Ghouti, N. Zouari, G. McKay, Removal of boron from water using adsorbents derived from waste tire rubber, J. Environ. Chem. Eng., 7 (2019) 102948.
  14. I. Mohmood, C.B. Lopes, I. Lopes, I. Ahmad, A.C. Duarte, E. Pereira, Nanoscale materials and their use in water contaminants removal—a review, Environ. Sci. Pollut. Res., 20 (2013) 1239–1260.
  15. S. Mahdavi, D. Akhzari, The removal of phosphate from aqueous solutions using two nano-structures: copper oxide and carbon tubes, Clean Technol. Environ Policy, 18 (2016) 817–827.
  16. S. Mahdavi, P. Molodi, M. Zarabi, Functionalized MgO, CeO2, and ZnO nanoparticles with humic acid for the study of nitrate adsorption efficiency from water, Res. Chem. Intermed., 44 (2018) 543–562.
  17. M. Verma, I. Tyagi, R. Chandra, V.K. Gupta, Adsorptive removal of Pb(II) ions from aqueous solution using CuO nanoparticles synthesized by sputtering method, J. Mol. Liq., 225 (2017) 936–944.
  18. S. Mahdavi, M. Jalali, A. Afkhami, Removal of heavy metals from aqueous solutions using Fe3O4, ZnO, and CuO nanoparticles, J. Nanopart. Res., 14 (2012) 171–188.
  19. A. Chakraborty, D.A. Islam, H. Acharya, Facile synthesis of CuO nanoparticles deposited zeolitic imidazolate frameworks (ZIF-8) for efficient photocatalytic dye degradation, J. Solid State Chem., 269 (2019) 566–574.
  20. J.W. Kim, C.S. Ki, I.C. Um, Y.H. Park, A facile fabrication method and the boosted adsorption and photodegradation activity of CuO nanoparticles synthesized using a silk fibroin template, J. Ind. Eng. Chem., 56 (2017) 335–341.
  21. V.K. Gupta, R. Chandra, I. Tyagi, M. Verma, Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications, J. Colloid Interface Sci., 478 (2016) 54–62.
  22. P. Nuengmatcha, P. Porrawatkul, S. Chanthai, P. Sricharoen, N. Limchoowong, Enhanced photocatalytic degradation of Methylene blue using Fe2O3/graphene/CuO nanocomposites under visible light, J. Environ. Chem. Eng., 7 (2019) 103438.
  23. I. Jacukowicz-Sobala, D. Ociński, P. Mazur, E. Stanisławska, E. Kociołek-Balawejder, Evaluation of hybrid anion exchanger containing cupric oxide for As(III) removal from water, J. Hazard. Mater., 370 (2019) 117–125.
  24. D.L. Sparks, A. Le Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, M.E. Sumner, Methods of Soil Analysis. Part 3-Chemical Methods, Soil Science Society of America Inc., Madison, Wis., 1996.
  25. S. Mahdavi, N. Amini, The role of bare and modified nano nickel oxide as efficient adsorbents for the removal of Cd2+, Cu2+, and Ni2+ from aqueous solution, Environ. Earth Sci., 75 (2016) 1468.
  26. S. Mahdavi, N. Amini, H. Merrikhpour, D. Akhzari, Characterization of bare and modified nano-zirconium oxide (ZrO2) and their applications as adsorbents for the removal of bivalent heavy metals, Korean J. Chem. Eng., 34 (2017) 234–244.
  27. H.K. Moghaddam, M. Pakizeh, Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent, J. Ind. Eng. Chem., 21 (2015) 221–229.
  28. V.V.T. Padil, M. Černík, Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application, Int. J. Nanomed., 8 (2013) 889.
  29. O.C. Türker, T. Baran. Evaluation and application of an innovative method based on various chitosan composites and Lemna gibba for boron removal from drinking water, Carbohydr. Polym., 166 (2017) 209–218.
  30. N.B. Darwish, V. Kochkodan, N. Hilal, Boron removal from water with fractionized amberlite IRA743 resin, Desalination, 370 (2015) 1–6.
  31. A. Kurniawan, S. Ismadji. Potential utilization of Jatropha curcas L. press-cake residue as new precursor for activated carbon preparation: application in Methylene blue removal from aqueous solution, J. Taiwan Inst. Chem. Eng., 42 (2011) 826–836.
  32. S.K. Theydan, M.J. Ahmed, Adsorption of Methylene blue onto biomass-based activated carbon by FeCl3 activation: equilibrium, kinetics, and thermodynamic studies, J. Anal. Appl. Pyrolysis, 97 (2012) 116–122.
  33. J. Lyu, N. Zhang, H. Liu, Z. Zeng, J. Zhang, P. Bai, X. Guo, Adsorptive removal of boron by zeolitic imidazolate framework: kinetics, isotherms, thermodynamics, mechanism, and recycling, Sep. Purif. Technol., 187 (2017) 67–75.
  34. N. Kataria, V. Garg, Optimization of Pb(II) and Cd(II) adsorption onto ZnO nanoflowers using central composites design: isotherms and kinetics modeling, J. Mol. Liq., 271 (2018) 228–239.
  35. E. Goli, R. Rahnemaie, T. Hiemstra, M.J. Malakouti, The interaction of boron with goethite: experiments and CD–MUSIC modelling, Chemosphere, 82 (2011) 1475–1481.
  36. M. Kehal, L. Reinert, L. Duclaux, Characterization and boron adsorption capacity of vermiculite modified by thermal shock or H2O2 reaction and/or sonication, Appl. Clay Sci., 48 (2010) 561–568.
  37. S. Seyhan, Y. Seki, M. Yurdakoc, M. Merdivan, Application of iron-rich natural clays in Camlica, Turkey for boron sorption from water and its determination by fluorimetric-azomethine-H method, J. Hazard. Mater., 146 (2007) 180–185.
  38. C.B. Tabelin, T. Igarashi, T. Arima, D. Sato, T. Tatsuhara, S. Tamoto, Characterization and evaluation of arsenic and boron adsorption onto natural geologic materials, and their application in the disposal of excavated altered rock, Geoderma, 213 (2014) 163–172.
  39. İ. Kıpçak, M. Özdemir, Removal of boron from aqueous solution using calcined magnesite tailing, Chem. Eng. J., 189 (2012) 68–74.