References

  1. J.D. Rusmirović, N. Obradović, J. Perendija, A. Umićević, A. Kapidžić, B. Vlahović, V. Pavlović, A.D. Marinković, V.B. Pavlović, Controllable synthesis of Fe3O4-wollastonite adsorbents for efficient heavy metal ions/oxyanions removal, Environ. Sci. Pollut. Res., 26 (12) (2019) 12379–12398.
  2. S. Jodeh, M. Shawahny, G. Hanbali, D. Jodeh, O. Dagdag, Efficiency of magnetic chitosan supported on graphene for removal of perchlorate ions from wastewater, Environ. Technol., (2019) 1–27. doi: 10.1080/09593330.2019.1657963.
  3. G.B. Vieira, G. Scaratti, F.S. Rodembusch, S.M. De Amorim, M. Peterson, G.L. Puma, R. De Fátima Peralta Muniz Moreira, Tuning the photoactivity of TiO2 nanoarchitectures doped with cerium or neodymium and application to colour removal from wastewaters, Environ. Technol., (2019) 1–15. doi:10.1080/095933 30.2019.1651402.
  4. D. Paul, Research on heavy metal pollution of river Ganga: a review, Ann. Agrar. Sci., 15 (2017) 278–286.
  5. F. Esposito, V. Memoli, G. Di Natale, M. Trifuoggi, G. Maisto, Quercus ilex L. leaves as filters of air Cd, Cr, Cu, Ni and Pb, Chemosphere, 218 (2019) 340–346.
  6. K. Taleb, J. Markovski, Z. Veličković, J. Rusmirović, M. Rančić, V. Pavlović, A. Marinković, Arsenic removal by magnetiteloaded amino modified nano/microcellulose adsorbents: effect of functionalization and media size, Arabian J. Chem., 12 (2019) 4675–4693.
  7. US EPA, Water Quality Standards, United States Environmental Protection Agency, William Jefferson Clinton Federal Building, Washington, D.C., U.S., 2014.
  8. S.Q. Gu, X.N. Kang, L. Wang, E. Lichtfouse, C.Y. Wang, Clay mineral adsorbents for heavy metal removal from wastewater: a review, Environ. Chem. Lett., 17 (2019) 629–654.
  9. D. Budimirović, Z.S. Veličković, V.R. Djokić, M. Milosavljević, J. Markovski, S. Lević, A.D. Marinković, Efficient As(V) removal by α-FeOOH and α-FeOOH/α-MnO2 embedded PEG-6-arm functionalized multiwall carbon nanotubes, Chem. Eng. Res. Des., 119 (2017) 75–86.
  10. K. Taleb, J. Markovski, M. Milosavljević, M. Marinović-Cincović, J. Rusmirović, M. Ristić, A. Marinković, Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron oxide: material performance, Chem. Eng. J., 279 (2015) 66–78.
  11. Y.C. Sharma, G.S. Gupta, G. Prasad, D.C. Rupainwar, Use of wollastonite in the removal of Ni(II) from aqueous solutions, Water Air Soil Pollut., 49 (1990) 69–79.
  12. N. Obradović, S. Filipović, S. Marković, M. Mitrić, J. Rusmirović, A. Marinković, V. Antić, V. Pavlović, Influence of different poreforming agents on wollastonite microstructures and adsorption capacities, Ceram. Int., 43 (2017) 7461–7468.
  13. Z.H. Li, J.-S. Jean, W.-T. Jiang, P.-H. Chang, C.-J. Chen, L.B. Liao, Removal of arsenic from water using Fe-exchanged natural zeolite, J. Hazard. Mater., 187 (2011) 318–323.
  14. E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci., 280 (2004) 309–314.
  15. Y. Li, H.Z. Zhao, Effect of reduced Al2O3 mole ratio on fabrication of cordierite ceramic by solid-state sintering method, Sci. Sintering, 51 (2019) 189–197.
  16. A. Benhammou, Y. El Hafiane, A. Abourriche, Y. Abouliatim, L. Nibou, A. Yaacoubi, N. Tessier-Doyen, A. Smith, B. Tanouti, Effects of oil shale addition and sintering cycle on the microstructure and mechanical properties of porous cordieriteceramic, Ceram. Int., 40 (2014) 8937–8944.
  17. T.D. Senguttuvan, H.S. Kalsi, S.K. Sharda, B.K. Das, Sintering behavior of alumina rich cordierite porous ceramics, Mater. Chem. Phys., 67 (2001) 146–150.
  18. X. Wu, Z.-h. Chen, Y.-l. Feng, X.-p. Liu, X.-l. Li, Fabrication of micro-honeycomb ceramics by cloth fabric pore-forming, Trans. Nonferrous Met. Soc. China, 21 (2011) 2665–2670.
  19. S.F. Liu, Y.-P. Zeng, D.L. Jiang, Fabrication and characterization of cordierite-bonded porous SiC ceramics, Ceram. Int., 35 (2009) 597–602.
  20. N. Obradović, S. Filipović, J. Rusmirović, G. Postole, A. Marinković, D. Radić, V. Rakić, V. Pavlović, A. Auroux, Formation of porous wollastonite-based ceramics after sintering with yeast as the pore-forming agent, Sci. Sintering, 49 (2017) 235–246.
  21. E.F. Krivoshapkina, P.V. Krivoshapkin, A.A. Vedyagin, Synthesis of Al2O3-SiO2-MgO ceramics with hierarchical porous structure, J. Adv. Ceram., 6 (2017) 11–19.
  22. Z. Zivcová, E. Gregorová, W. Pabst, Alumina ceramics prepared with new pore-forming agents, Process. Appl. Ceram., 2 (2008) 1–8.
  23. J.D. Rusmirović, M.P. Rančić, V.B. Pavlović, V.M. Rakić, S. Stevanović, J. Djonlagić, A.D. Marinković, Cross-linkable modified nanocellulose/polyester resin-based composites: effect of unsaturated fatty acid nanocellulose modification on material performances, Macromol. Mater. Eng., 303 (2018) 1–12.
  24. J.D. Rusmirović, J.Z. Ivanović, V.B. Pavlović, V.M. Rakić, M.P. Rančić, V. Djokić, A.D. Marinković, Novel modified nanocellulose applicable as reinforcement in high-performance nanocomposites, Carbohydr. Polym., 164 (2017) 64–74.
  25. E. Sláviková, R. Vadkertiová, The diversity of yeasts in the agricultural soil, J. Basic Microbiol., 43 (2003) 430–436.
  26. C. Mateo, O. Abian, R. Fernandez-Lafuente, J.M. Guisan, Reversible enzyme immobilization via a very strong and nondistorting ionic adsorption on support – polyethylenimine composites, Biotechnol. Bioeng., 68 (2000) 98–105.
  27. H. Sontheimer, J.C. Crittenden, R.S. Summers, Activated Carbon for Water Treatment, DVGW-Forschungsstelle, Engler-Bunte-Institut, Universitat Karlsruhe (TH), Karlsruhe, Germany, 1988, pp. 66–67.
  28. G.D. Vuković, A.D. Marinković, S.D. Škapin, M.Đ. Ristić, R. Aleksić, A. Perić-Grujić, P.S. Uskoković, Removal of lead from water by amino modified multi-walled carbon nanotubes, Chem. Eng. J., 173 (2011) 855–865.
  29. A. Omar, R. Al-Obeed, M. Ahmed, Effect of foliar spraying with potassium dehydrogenase phosphate and yeast extract on yield and fruit quality of Sukary date palm (Phoenix dactylifera L.) in Saudi Arabia, Adv. Agric. Sci., 6 (2018) 25–32.
  30. J.D. Rusmirović, M.P. Rančić, A.D. Marinković, Chapter 8 – Processing and Characterization of Modified Nanocellulose/Polyester Composites, T. Stevanovic, Eds., Chemistry of Lignocellulosics: Current Trends, Taylor & Francis Group, CRC Press, Cleveland, Ohio, United States, 2018, pp. 167–213.
  31. V. Usoltsev, S. Tikhov, A. Salanov, V. Sadykov, G. Golubkova, O. Lomovskii, Properties of porous FeAlOy/FeAlx ceramic matrix composite influenced by mechanical activation of FeAl powder, Bull. Mater. Sci., 36 (2013) 1195–1200.
  32. S.Y. Ni, L. Chou, J. Chang, Preparation and characterization of forsterite (Mg2SiO4) bioceramics, Ceram. Int., 33 (2007) 83–88.
  33. A.S. Majumdar, G. Mathew, Raman-Infrared (IR) spectroscopy study of natural cordierites from Kalahandi, Odisha, J. Geol. Soc. India., 86 (2015) 80–92.
  34. K.M. de Lathouder, D.T.J. van Benthem, S.A. Wallin, C. Mateo, R.F. Lafuente, J.M. Guisan, F. Kapteijn, J.A. Moulijn, Polyethyleneimine (PEI) functionalized ceramic monoliths as enzyme carriers: preparation and performance, J. Mol. Catal. B: Enzym., 50 (2008) 20–27.
  35. A. Popovic, J. Rusmirovic, S. Levic, A. Bozic, T. Kovacevic, Amino-Functionalized Lignin Microsperes: Synthesis and Characterization of High-Performance Adsorbent for Effective Nickel(II) Ion Removal, 31st International congress on Process Industry, Belgrade, Serbia, 2018, pp. 235–239.
  36. M.A. Ahmed, S.M. Ali, S.I. El-Dek, A. Galal, Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water, Mater. Sci. Eng., B, 178 (2013) 744–751.
  37. S. Rajput, C.U. Pittman Jr., D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water, J. Colloid Interface Sci., 468 (2016) 334–346.
  38. J.P. Gustafsson, Visual MINTEQ. 3.0, Beta, 2011.
  39. A. Drah, N.Z. Tomić, Z. Veličić, A.D. Marinković, Ž. Radovanović, Z. Veličković, R. Jančić-Heinemann, Highly ordered macroporous γ-alumina prepared by a modified solgel method with a PMMA microsphere template for enhanced Pb2+, Ni2+ and Cd2+ removal, Ceram. Int,. 43 (2017) 13817–13827.
  40. C.-H. Liu, Y.-H. Chuang, T.-Y. Chen, Y. Tian, H. Li, M.-K. Wang, W. Zhang, Mechanism of arsenic adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic studies, Environ. Sci. Technol., 49 (2015) 7726–7734.
  41. F. Rouquerol, J. Rouquerol, S. Kenneth, Adsorption by Powders and Porous Solids: Principles, Methodology and Application, Academic Press, USA, 1999.
  42. Z. Veličković, G.D. Vuković, A.D. Marinković, M.S. Moldovan, A.A. Perić-Grujić, P.S. Uskoković, M.D. Ristić, Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes, Chem. Eng. J., 181–182 (2012) 174–181.
  43. O. Bizerea Spiridon, L. Pitulice, Response to “Using of ‘pseudosecond- order model’ in adsorption”, comment letter on “Phenol removal from wastewater by adsorption on zeolitic composite” [Bizerea Spiridon et al., Environ Sci Pollut Res (2013) 20:6367–
  44. , Environ. Sci. Pollut. Res., 21 (2014) 7236–7237.
  45. H. Qiu, L. Lv, B.-c. Pan, Q.-j. Zhang, W.-m. Zhang, Q.-x. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. Sci. A., 10 (2009) 716–724.
  46. G. Chen, K.J. Shah, L. Shi, P.-C. Chiang, Removal of Cd(II) and Pb(II) ions from aqueous solutions by synthetic mineral adsorbent: performance and mechanisms, Appl. Surf. Sci., 409 (2017) 296–305.