References

  1. W. Teng, Y. Wang, Q. Lin, H. Zhu, Y. Tang, X. Li, Synthesis of MoS2/TiO2 nanophotocatalyst and its enhanced visible lightdriven photocatalytic performance, J. Nanosci. Nanotechnol., 19 (2019) 3519–3527.
  2. K. Sirirekratana, P. Kemacheevakul, S. Chuangchote, Color removal from wastewater by photocatalytic process using titanium dioxide-coated glass, ceramic tile, and stainless steel sheets, J. Cleaner Prod., 215 (2019) 123–130.
  3. Y. Lin, C. Lu, C. Wei, Microstructure and photocatalytic performance of BiVO4 prepared by hydrothermal method, J. Alloys Compd., 781 (2019) 56–63.
  4. J. Xu, Z. Bian, X. Xin, A. Chen, H. Wang, Size dependence of nanosheet BiVO4 with oxygen vacancies and exposed {0 0 1} facets on the photodegradation of oxytetracycline, Chem. Eng. J., 337 (2018) 684–696.
  5. J.P. Deebasree, V. Maheskumar, B. Vidhya, Investigation of the visible light photocatalytic activity of BiVO4 prepared by sol–gel method assisted by ultrasonication, Ultrason. Sonochem., 45 (2018) 123–132.
  6. X. Zhang, Y. Huang, F. Ma, Z. Zhang, X. Wei, Influences of vacancies on the structural, electronic, and optical properties of monoclinic BiVO4, J. Phys. Chem. Solids, 121 (2018) 85–92.
  7. G. Li, B. Wang, Q. Sun, W. Xu, Y. Han, Visible-light photocatalytic activity of Fe and/or Ni-doped ilmenite derivedtitanium dioxide nanoparticles, J. Nanosci. Nanotechnol., 19 (2019) 3343–3355.
  8. H. Lee, S. Park, One-pot synthesis of reduced graphene oxide/anatase titanium dioxide composites for photocatalytic degradation of Methylene blue, J. Nanosci. Nanotechnol., 18 (2018) 6173–6179.
  9. L. Liu, R. Shan, Y. Shi, S. Wang, H. Yuan, A novel TiO2 /biochar composite catalysts for photocatalytic degradation of Methyl orange, Chemosphere, 222 (2019) 391–398.
  10. P.V. Gayathri, S. Yesodharan, E.P. Yesodharan, Purification of water contaminated with traces of Rhodamine B dye by microwave-assisted, oxidant-induced, and zinc oxide catalyzed advanced oxidation process, Desal. Water Treat., 85 (2017) 161–174.
  11. A. Burakw, E. Neskoromnaya, A. Babkin, Removal of the Alizarin red S anionic dye using graphene nanocomposites: a study on kinetics under dynamic conditions, Mater. Today, 11 (2019) 392–397.
  12. A. Jagusiak, T. Panczyk, Interaction of Congo red, Evans blue and Titan yellow with doxorubicin in aqueous solutions. A molecular dynamics study, J. Mol. Liq., 279 (2019) 640–648.
  13. H. Zhang, J. Zhou, Y. Muhammad, R. Tang, K. Liu, Y. Zhu, Z. Tong, Citric acid modified bentonite for Congo red adsorption, Front. Mater., 6 (2019) 1–11.
  14. C. Vicas, K. Namratha, M.B. Nayan, K. Byrappa, Controlled hydrothermal synthesis of bismuth vanadate nano-articulate structures: photooxidation of methicillin-resistant staphylococcus aureus and organic dyes, Mater. Today, 9 (2019) 468–480.
  15. M. Sajid, N. Amin, N. Shad, S. Kham, Y. Javed, Z. Zhang, Hydrothermal fabrication of monoclinic bismuth vanadate (m-BiVO4 ) nanoparticles for photocatalytic degradation of toxic organic dyes, Mater. Sci. Eng., B, 242 (2019) 83–89.
  16. M. Xu, S. Jia, C. Chen, Z. Zhang, J. Yan, Y. Guo, Y. Zhang, W. Zhao, J. Yun, Y. Wang, Microwave-assistant hydrothermal synthesis of SnO2@ZnO hierarchical nanostructures enhanced photocatalytic performance under visible light irradiation, Mater. Res. Bull., 106 (2018) 74–80.
  17. K. Liu, Y. Qin, Y. Muhammad, Y. Zhu, R. Tang, H. Zhang, Z. Tong, Effect of Fe3O4 content, and microwave reaction time on the properties of Fe3O4/ZnO magnetic nanoparticles, J. Alloys Compd., 781 (2019) 790–799.
  18. H. Zhang, Z. Song, D. Wang, Z. Tong, Y. Qin, A facile synthetic method of ZnO nanoparticles and its role in photocatalytic degradation of refractory organic matters, Desal. Water Treat., 90 (2017) 189–195.
  19. M. Sun, P. Guo, M. Wang, F. Ren, The effect of pH on the photocatalytic performance of BiVO4 for phenol mine sewage degradation under visible light, Optik, 179 (2019) 672–679.
  20. Y. Lu, H. Shang, F. Shi, C. Chao, X. Zhang, B. Zhang, Preparation, and efficient visible-light-induced photocatalytic activity of m-BiVO4 with different morphologies, J. Phys. Chem. Solids, 85 (2015) 44–50.
  21. M. Kim, E. Samuel, K. Kim, H. Yoon, B. Joshi, M. Swihart, S. Yoon, Tuning the morphology of electrosprayed BiVO4 from nanopillars to nanoferns via pH control for solar water splitting, J. Alloys Compd., 789 (2018) 193–200.
  22. X. Li, L. Xu, K. Li, M. Hu, R. Huang, C. Huang, Oxidant peroxo-synthesized monoclinic BiVO4: insights into the crystal structure deformation and the thermochromic properties, J. Alloys Compd., 787 (2019) 666–671.
  23. M. Wu, Q. Jing, X. Feng, L. Chen, BiVO4 microstructures with various morphologies: synthesis and characterization, Appl. Surf. Sci., 427 (2018) 525–532.
  24. J. Luo, P. Fu, Y. Qu, Z. Lin, W. Zeng, The n-butanol gas-sensing properties of monoclinic scheelite BiVO4 nanoplates, Physica E, 103 (2018) 71–75.
  25. Y. Lu, H. Shang, H. Guan, Y. Zhao, H. Zhang, B. Zhang, Enhanced visible-light photocatalytic activity of BiVO4 microstructures via annealing process, Superlattices Microstruct., 88 (2015) 591–599.
  26. S. Zhao, H. Zuo, Y. Guo, Q. Pan, Carbon-doped ZnO aided by carboxymethyl cellulose: fabrication, photoluminescence, and photocatalytic applications, J. Alloys Compd., 695 (2017) 1029–1037.
  27. R.A. Ocampo, F.E. Echeverria, Effect of the anodization parameters on TiO2 nanotubes characteristics produced in aqueous electrolytes with CMC, Appl. Surf. Sci., 469 (2019) 994–1006.
  28. A. Salama, S. Etri, S.A. Mohamed, M. Osakhawy, Carboxymethyl cellulose prepared from mesquite tree: new source for promising nanocomposite materials, Carbohydr. Polym., 189 (2018) 138–144.
  29. S. Javanbakht, M. Pwresmaeil, H. Namazi, Green one-pot synthesis of carboxymethylcellulose/Zn-based metal-organic framework/graphene oxide bio-nanocomposite as a nanocarrier for drug delivery system, Carbohydr. Polym., 208 (2019) 294–301.
  30. J.P. Tao, H.B. Zhang, Y.L. Qin, Z.Y. Song, L. Zhang, Preparation of BiVO4 by microwave-hydrothermal synthesis and its photocatalytic degradation of ARS under visible light, Technol. Water Treat., 41 (2015) 39–42.
  31. S. Phiankoh, R. Munprom, Effect of pH on crystal structure and morphology of hydrothermally-synthesized BiVO4, Mater. Today Proc., 5 (2019) 9447–9452.
  32. D. Kong, W. Li, T. Yan, Z. Wang, D.S. Kong, J. You, Preparation of novel BiVO4 nanofibers and their excellent adsorptive properties, Mater. Res. Bull., 105 (2018) 84–90.
  33. J. Tian, Q. Shao, J. Zhao, D. Pan, M. Dong, C. Jia, T. Ding, T. Wu, Z. Guo, Microwave solvothermal carboxymethyl chitosan templated synthesis of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B, J. Colloid Interface Sci., 541 (2019) 18–29.
  34. A. Kotta, S.A. Ansari, N. Parveen, H. Fouad, O.Y. Alothman, U. Khaled, H.K. Seo, S.G. Ansari, Z.A. Ansari, Mechanochemical synthesis of melamine doped TiO2 nanoparticles for dyesensitized solar cells application, J. Mater. Sci. Mater. Electron., 29 (2018) 9108–9116.
  35. H. Lin, H.T. Zhang, D. Peng, Y. Zhou, Z. Yi, Dynamic behavior of BiVO4 material under mechanical studies, J. Alloys Compd., 774 (2019) 651–655.
  36. X. Tao, L. Shao, R. Wang, H. Xiang, B. Li, Synthesis of BiVO4 nanoflakes decorated with AuPd nanoparticles as selective oxidation photocatalysts, J. Colloid Interface Sci., 541 (2019) 300–311.
  37. S. Ikeda, T. Kawaguchi, Y. Higuchi, N. Kawasaki, T. Harada, M. Remeika, Effects of Zirconium doping into a monoclinic scheelite BiVO4 crystal on its structural, photocatalytic, and photoelectrochemical properties, Front. Chem., 6 (2018) 1–6.
  38. N.P. Moraes, F.N. Silva, M.L.C.P. Silva, T.M.B. Campos, G.P. Thim, L.A. Rodrigues, Methylene blue photodegradation employing hexagonal prism-shaped niobium oxide as heterogeneous catalyst: effect of catalyst dosage, dye concentration, and radiation source, Mater. Chem. Phys., 214 (2018) 95–106.
  39. T. Tikhomirova, G.R. Ramazanova, V.V Apyari, Effect of nature and structure of synthetic anionic food dyes on their sorption onto different sorbents: peculiarities and prospects, Microchem. J., 143 (2018) 305–311.
  40. X. Zhao, J. Hu, S. Chen, Z. Chen, An investigation on the role of W doping in BiVO4 photoanodes used for solar water splitting, Phys. Chem. Chem. Phys., 20 (2018) 13637–13645.
  41. H. Razavi-Khosroshahi, S. Mohammadzadeh, M. Hojamberdiew, S. Kitano, M. Yamauchi, M. Fuji, BiVO4/BiOX (X = F, Cl, Br, I) heterojunctions for degrading organic dye under visible light, Adv. Powder Technol., 30 (2019) 1290–1296.
  42. H. Li, Y. Zhao, C. Yin, L. Jiao, L. Ding, WO3 nanocrystal prepared by self-assembly of phosphotungstic acid and dopamine for photocatalytic degradation of Congo red, Colloids Surf., A, 572 (2019) 147–151.
  43. S. Aghabeygi, L. Hashemi, A. Morsali, Synthesis, and characterization of ZnO nano-rods via thermal decomposition of Zinc(II) coordination polymers and their photocatalytic properties, J. Inorg. Organomet. Polym., 26 (2016) 495–499.
  44. H. Guo, K. Lin, Z. Zhang, F. Xiao, S. Li, Sulfanilic acidmodified P25 TiO2 nanoparticles with improved photocatalytic degradation on Congo red under visible light, Dyes Pigm., 92 (2012) 1278–1284.
  45. F.Z. Akika, M. Benamira, H. Lahmar, A. Tibera, R. Chabi, L. Avramova, S. Suzer, M. Trari, Structural and optical properties of Cu-substitution of NiAl2O4 and their photocatalytic activity towards Congo red under solar light irradiation, J. Photochem. Photobiol., A, 364 (2018) 542–550.
  46. S.K. Kansal, R. Lamba, S.K. Mehta, A. Umar, Photocatalytic degradation of Alizarin red S using simply synthesized ZnO nanoparticles, Mater. Lett., 106 (2013) 385–389.
  47. S. Akshatha, S. Sreenivasa, L. Parashuram, V. Kumar, S.C. Sharma, H. Magalohushana, S. Kumar, T. Maiyalagan, Synergistic effect of hybrid Ce3+/Ce4+ doped Bi2O3 nano-sphere photocatalyst for enhanced photocatalytic degradation of Alizarin red S dye and its NUV excited photoluminescence studies, Chem. Eng. J., 7 (2019) 103053.
  48. M.L. Souza, P. Corio, Effect of silver nanoparticles on TiO2-mediated photodegradation of Alizarin red S, Appl. Catal., B, 136–137 (2013) 325–333.
  49. H. Veisi, S. Tatli, M. Haghgoo, A. Amisama, S. Farahmand, S. Hemmati, Immobilization of palladium nanoparticles on thiol-functionalized multi-walled carbon nanotubes with enhanced photocatalytic activity for the degradation of Alizarin red, Polyhedron, 165 (2019) 9–16.
  50. M. Biswas, W. Oh, Synthesis of BiVO4-GO-PVDF nanocomposite: an excellent, newly designed material for high photocatalytic activity towards organic dye degradation by tuning band gap energies, Solid State Sci., 80 (2018) 22–30.
  51. Z. Ye, X. Xiao, J. Chen, Y. Wang, Fabrication of BiVO4/BiOBr composite with enhanced photocatalytic activity by a CTAB-assisted polyol method, J. Photochem. Photobiol., A, 368 (2019) 153–161.
  52. B. Samran, S. Lunput, S. Tonnonchiang, S. Chaiwichian, BiFeO3/BiVO4 nanocomposite photocatalysts with highly enhanced photocatalytic activity for Rhodamine B degradation under visible light irradiation, Physica B, 561 (2019) 23–28.