References

  1. K.M. Parker, J.J. Pignatello, W.A. Mitch, Influence of ionic strength on triplet-state natural organic matter loss by energy transfer and electron transfer pathways, Environ. Sci. Technol., 47 (2013) 10987–10994.
  2. S. Bahnmüller, U. von Gunten, S. Canonica, Sunlight-induced transformation of sulfadiazine and sulfamethoxazole in surface waters and wastewater effluents, Water Res., 57 (2014) 183–192.
  3. S.I. Carvalho, M. Otero, A.C. Duarte, E.B. Santos, Spectroscopic changes on fulvic acids from a kraft pulp mill effluent caused by sun irradiation, Chemosphere, 73 (2008) 1845–1852.
  4. J. Chen, B. Gu, E.J. Le Boeuf, H. Pan, S. Dai, Spectroscopic characterization of the structural and functional properties of natural organic matter fractions, Chemosphere, 48 (2002) 59–68.
  5. W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter, Environ. Sci. Technol., 37 (2003) 5701–5710.
  6. A.T. Chow, F. Guo, S. Gao, R.S. Breuer, Size and XAD fractionations of trihalomethane precursors from soils, Chemosphere, 62 (2006) 1636–1646.
  7. G.L. Aiken, D.M. McKnight, K.A. Thorn, E.M. Thurman, Isolation of hydrophilic organic acids from water using nonionic macroporous resins, Org. Geochem., 18 (1992) 567–573.
  8. S. Xue, Q.L. Zhao, L.L. Wei, T. Jia, Trihalomethane formation potential of organic fractions in secondary effluent, J. Environ. Sci., 20 (2008) 520–527.
  9. D.M. Quanrud, M.M. Karpiscak, K.E. Lansey, R.G. Arnold, Transformation of effluent organic matter during subsurface wetland treatment in the Sonoran Desert, Chemosphere, 54 (2004) 777–788.
  10. S. Xue, Q.L. Zhao, L.L. Wei, N.Q. Ren, Behavior and characteristics of dissolved organic matter during column studies of soil aquifer treatment, Water Res., 43 (2009) 499–507.
  11. B.A. Cottrell, M. Gonsior, S.A. Timko, A.J. Simpson, W.J. Cooper, W. van der Veer, Photochemistry of marine and fresh waters: a role for copper–dissolved organic matter ligands, Mar. Chem., 162 (2014) 77–88.
  12. Y. Du, H. Chen, Y. Zhang, Y. Chang, Photodegradation of gallic acid under UV irradiation: insights regarding the pH effect on direct photolysis and the ROS oxidation-sensitized process of DOM, Chemosphere, 99 (2014) 254–260.
  13. A. El-Ghenymy, R.M. Rodríguez, C. Arias, F. Centellas, J.A. Garrido, P.L. Cabot, E. Brillas, Electro-Fenton and photoelectro-Fenton degradation of the antimicrobial sulfamethazine using a boron-doped diamond anode and an airdiffusion cathode, J. Electroanal. Chem., 701 (2013) 7–13.
  14. J.B. Fellman, K. Petrone, P. Grierson, Leaf litter age, chemical quality, and photodegradation control the fate of leachate dissolved organic matter in a dryland river, J. Arid Environ., 89 (2013) 30–37.
  15. W. Feng, D. Nansheng, Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. A mini review, Chemosphere, 41 (2000) 1137–1147.
  16. M.T. Ghaneian, P. Morovati, M.H. Ehrampoush, M. Tabatabaee, Humic acid degradation by the synthesized flower-like Ag/ZnO nanostructure as an efficient photocatalyst, J. Environ. Health Sci. Eng., 12 (2014) 138.
  17. C.L. Kang, X.J. Tang, P. Guo, H.J. Gao, F. Peng, X.J. Liu, Photoconversion of phenol in ice with the presence of nitrate, Chem. J. Chinese U., 4 (2009) 757–761.
  18. V. Kavitha, K. Palanivelu, The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol, Chemosphere, 55 (2004) 1235–1243.
  19. H.C. Kim, M.J. Yu, Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control, Water Res., 39 (2005) 4779–4789.
  20. H.C. Kim, M.J. Yu, I. Han, Multi-method study of the characteristic chemical nature of aquatic humic substances isolated from the Han River, Korea, Appl. Geochem., 21 (2006) 1226–1239.
  21. J. Klanova, P. Klan, J. Nosek, I. Holoubek, Environmental ice photochemistry: monochlorophenols, Environ. Sci. Technol., 37 (2003) 1568–1574.
  22. S. Xue, C. Wang, Z.H. Zhang, Y.T. Song, Q. Liu, Photodegradation of dissolved organic matter in ice under solar irradiation, Chemosphere, 144 (2016) 816–826.
  23. J.-P. Croueä, M.F. Benedetti, D. Violleau, J.A. Leenheer, Characterization and copper binding of humic and nonhumic organic matter isolated from the South Platte River: evidence for the presence of nitrogenous binding site, Environ. Sci. Technol., 37 (2003) 328–336.
  24. R.G. Zepp, B.C. Faust, J. Holgné, Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction, Environ. Sci. Technol., 26 (1992) 313–319.
  25. S. Lofts, E. Tipping, J. Hamilton-Taylor, The chemical speciation of Fe(III) in freshwaters, Aquat. Geochem., 14 (2008) 337–358.
  26. M.V. Shankar, S. Nélieu, L. Kerhoas, J. Einhorn, Photo-induced degradation of diuron in aqueous solution by nitrites and nitrates: kinetics and pathways, Chemosphere, 66 (2007) 767–774.
  27. J. Chen, S.O. Pehkonen, C.J. Lin, Degradation of monomethylmercury chloride by hydroxyl radicals in simulated natural waters, Water Res., 37 (2003) 2496–2504.
  28. S.A. Timko, M. Gonsior, W.J. Cooper, Influence of pH on fluorescent dissolved organic matter photo-degradation, Water Res., 85 (2015) 266–274.
  29. C.M. Glover, F.L. Rosario-Ortiz, Impact of halides on the photoproduction of reactive intermediates from organic matter, Environ. Sci. Technol., 47 (2013) 13949–13956.
  30. C. Liang, H. Zhao, M. Deng, X. Quan, S. Chen, H. Wang, Impact of dissolved organic matter on the photolysis of the ionizable antibiotic norfloxacin, J. Environ. Sci., 27 (2015) 115–123.
  31. S. Xue, Q.L. Zhao, X. Ma, F. Li, J. Wang, L.L. Wei, Comparison of dissolved organic matter fractions in a secondary effluent and a natural water, Environ. Monit. Assess., 180 (2011) 371–383.
  32. L. Zhou, Y. Zhang, Q. Wang, C. Ferronato, X. Yang, J.-M. Chovelon, Photochemical behavior of carbon nanotubes in natural waters: reactive oxygen species production and effects on •OH generation by Suwannee River fulvic acid, nitrate, and Fe(III), Environ. Sci. Pollut. Res., 23 (2016) 19520–19528.
  33. S. Xue, Q. Zhao, L. Wei, Y. Song, M. Tie, Fluorescence spectroscopic characterization of dissolved organic matter fractions in soils in soil aquifer treatment, Environ. Monit. Assess., 185 (2013) 4591–4603.
  34. X. Yang, F. Meng, G. Huang, L. Sun, Z. Lin, Sunlight-induced changes in chromophores and fluorophores of wastewaterderived organic matter in receiving waters–the role of salinity, Water Res., 62 (2014) 281–292.
  35. C. Zeri, Ş. Beşiktepe, A. Giannakourou, E. Krasakopoulou, M. Tzortziou, D. Tsoliakos, A. Pavlidou, G. Mousdis, E. Pitta, M. Scoullos, Chemical properties and fluorescence of DOM in relation to biodegradation in the interconnected Marmara–North Aegean Seas during August 2008, J. Mar. Syst., 135 (2014) 124–136.
  36. G. Zhu, J. Yin, P. Zhang, X. Wang, G. Fan, B. Hua, B. Ren, H. Zheng, B. Deng, DOM removal by flocculation process: fluorescence excitation–emission matrix spectroscopy (EEMs) characterization, Desalination, 346 (2014) 38–45.