References

  1. S. Baup, Über eine neue pyrogen- citronensäure, und über benennung der pyrogen säure überhaupt, Ann. Chim. Phys., 9 (1837) 29–38.
  2. A. Kuenz, S. Krull, Biotechnological production of itaconic acid – things you have to know, Appl. Microbiol. Biotechnol., 102 (2018) 3901–3914.
  3. A. De Robertis, C. De Stefano, C. Rigano, S. Sammartano, Thermodynamic parameters for the protonation of carboxylic acids in aqueous tetraethylammonium iodide solutions, J. Solution Chem., 19 (1990) 569–587.
  4. K. Kinoshita, Über die produktion von itaconsäureund mannit durch einen neuen schimmelpilz, Aspergillus itaconicus, Acta Phytochim., 5 (1932) 271–287.
  5. M. Steiger, G. Blumhoff, L. Marzena, D. Mattanovich, M. Sauer, Biochemistry of microbial itaconic acid production, Front. Microbiol., 4 (2013) 1–5.
  6. W.E. Levinson, C.P. Kurtzman, T.M. Kuo, Production of itaconic acid by Pseudozyma Antarctica NRRL Y-7808 under nitrogen-limited growth conditions, Enzyme Microb. Technol., 39 (2006) 824–827.
  7. M. Okabe, D. Lies, S. Kanamasa, E.Y. Park, Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus, Appl. Microbiol. Biotechnol., 84 (2009) 597–606.
  8. T. Heidorn, D. Camsund, H. Huang, P. Lindberg, P. Oliveria, K. Stensjo, P. Lindblad, Synthetic biology in cyanobacteria: engineering and analysing novel functions, Methods Enzymol., 497 (2011) 539–579.
  9. T. Chin, M. Sano, T. Takahashi, H. Ohara, Y. Aso, Photosynthetic production of itaconic acid in Synechocystis sp. PCC6803, J. Biotechnol., 195 (2015) 43–45.
  10. L. Karaffa, R. Diaz, B. Papp, E. Fekete, E. Sandor, C.P. Kubicek, A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus, Appl. Microbiol. Biotechnol., 99 (2015) 7937–7944.
  11. N. Nemestóthy, P. Komaromy, P. Bakonyi, A.L. Toth, G. Toth, L. Gubicza, K. Belafi-Bako, Carbohydrate to itaconic acid conversion by Aspergillus terreus and the evaluation of process monitoring based on the measurement of CO2, Waste Biomass Valorization, 11 (2020) 1069–1075.
  12. P. Komaromy, P. Bakonyi, A. Kucska, G. Tóth, L. Gubicza, K. Belafi-Bako, N. Nemestothy, Optimized pH and its control strategy lead to enhanced itaconic acid fermentation by Aspergillus terreus on glucose substrate, Fermentation, 5 (2019) 31–39.
  13. M. Okabe, N. Ohta, Y.S. Park, Itaconic acid production in an air-lift bioreactor using a modified draft tube, J. Ferment. Bioeng., 76 (1993) 117–122.
  14. V. Varga, K. Bélafi-Bakó, D. Vozik, N. Nemestóthy, Recovery of itaconic acid by electrodialysis, Hung. J. Ind. Chem., 46 (2018) 43–46.
  15. A. Eggert, T. Maßmann, D. Kreyenschulte, M. Becker, B. Heyman, J. Büchs, A. Jupke, Integrated in-situ product removal process concept for itaconic acid by reactive extraction, pH-shift back extraction and purification by pH-shift crystallization, Sep. Purif. Technol., 215 (2019) 463–472.
  16. J. Stodollick, R. Femmer, M. Gloede, T. Melin, M. Wessling, Electrodialysis of itaconic acid: a short-cut model quantifying the electrical resistance in the overlimiting current density region, J. Membr. Sci., 453 (2014) 275–281.
  17. A. Hevekerl, A. Kuenz, K.D. Vorlop, Influence of the pH on the itaconic acid production with Aspergillus terreus, Appl. Microbiol. Biotechnol., 98 (2014) 10005–10012.
  18. N. Nemestóthy, P. Bakonyi, P. Komáromy, K. Bélafi-Bakó, Evaluating aeration and stirring effects to improve itaconic acid production from glucose using Aspergillus terreus, Biotechnol. Lett., 41 (2019) 1383–1389.
  19. J. Wang, W. Wan, Experimental design methods for fermentative hydrogen production: a review, Int. J. Hydrogen Energy, 34 (2009) 235–244.
  20. A.T. Tran, P. Mondal, J. Lin, B. Meesschaert, L. Pinoy, B. Van der Bruggen, Simultaneous regeneration of inorganic acid and base from a metal washing step wastewater by bipolar membrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor, J. Membr. Sci., 473 (2015) 118–127.
  21. X. Tongwen, Y. Weihua, Citric acid production by electrodialysis with bipolar membranes, Chem. Eng. Process., 41 (2002) 519–524.
  22. M. Fidaleo, M. Moresi, Application of the Nernst–Planck approach to model the electrodialytic recovery of disodium itaconate, J. Membr. Sci., 349 (2010) 393–404.
  23. M. Moresi, F. Sappino, Electrodialytic recovery of some fermentation products from model solutions: techno-economic feasibility study, J. Membr. Sci., 164 (2000) 129–140.
  24. K. Prochaska, J.M. Woźniak-Budych, Recovery of fumaric acid from fermentation broth using bipolar electrodialysis, J. Membr. Sci., 469 (2014) 428–435.
  25. L.M. Lameloise, R. Lewandowski, Recovering L-malic acid from a beverage industry waste water: experimental study of the conversion stage using bipolar membrane electrodialysis, J. Membr. Sci., 403 (2012) 196–202.