References

  1. FAO, 2015. Available at: http://www.fao.org/faostat/en/#data/RFN
  2. EBA Statistical Report, 2017. Available at: https://www.europeanbiogas.eu/eba-statistical-report-2017-published-soon
  3. EurObserv’ER Renewable Energy Sector barometers, 2017. Available at: https://www.eurobserv-er.org/biogas-barometer-2017
  4. K. Gebrehivot, T. Desalegn, Z. Woldu, S. Demissew, E. Teferi, Soil organic carbon stock in Abune Yosef afroalpine and sub-afroalpine vegetation, northern Ethiopia, Ecol. Processes, 7 (2018).
  5. K. Smith, J. Grylls, P. Metcalfe, B. Jeffrey, A. Sinclair, Nutrient Value of Digestate from Farm-Based Biogas Plants in Scotland, Executive Report ADA/009/06, 2007.
  6. T.W. Crowther, K.E.O. Todd-Brown, W. Rowe, W.R.Wieder, J.C. Carey, M.B. Machmuller, B.L. Snoek, S. Fang, G. Zhou, S.D. Allison, J.M. Blair, S.D. Bridgham, A.J. Burton, Y. Carrillo, P.B. Reich, J.S. Clark, A.T. Classen, F.A. Dijkstra, B. Elberling, B.A. Emmett, M. Estiarte, S.D.Frey, J. Guo, J. Harte, L. Jiang, B.R. Johnson, G. Kröel-Dulay, K.S. Larsen, H. Laudon, J.M. Lavallee, Y. Luo, M. Lupascu, L.N. Ma, S. Marhan, A. Michelsen, J. Mohan, S. Niu, E. Pendall, J. Peñuelas, L. Pfeifer-Meister, C.Poll S. Reinsch, L.L. Reynolds, I.K. Schmidt, S. Sistla, N.W. Sokol, P.H. Templer, K.K. Treseder, J.M. Welker, M.A. Bradford, Quantifying global soil carbon losses in response to warming, Nature, 540 (2016) 104–110.
  7. A. Piccolo, R. Spaccini, M. Drosos, G. Vinci, V. Cozzolino, Chapter 4: The Molecular Composition of Humus Carbon: Recalcitrance and Reactivity in Soils, C. Garcia, P. Nannipieri, T. Hernandez, editors, The Future of Soil Carbon, Academic Press, London, 2018, pp. 87–124.
  8. H. Insam, M. Gomez-Brandon, J. Ascher, Manure-based biogas fermentation residues – Friend or foe of soil fertility?, Soil Biol. Biochem., 84 (2015) 1–14.
  9. E. Comino, V.A. Riggio, M. Rosso, Constructed wetland treatment of agricultural effluent from an anaerobic digester, Ecol. Eng., 54 (2013) 165–172.
  10. R. Kadam, D. Sharma, A. Pawar, Filtration of biogas spent slurry and it’s chemical analysis, Int. J. Chem. Stud., 5 (2017) 405–408.
  11. P. Thury, The Quality of Anaerobic Digestate from Wastewater Treatment Plants, and Its Effects on the Main Treatment Flow, Thesis, University of Pannonia, Hungary, 2009.
  12. G. Maynaud, C. Druilhe, M. Daumoin, J. Jimenez, D. Patureau, M. Torrijos, A.M, Pourcher, N. Wéry, Characterisation of the biodegradability of post-treated digestates via the chemical accessibility and complexity of organic matter, Bioresour. Technol., 231 (2017) 65–74.
  13. A. Akhiar, M. Torrijos, H. Carrere, A. Battimelli, Caractérisation de la Fraction Liquide des Digestats Issus de la Codigestion de Résidus Solides, Thesis in French, INRA Narbonne, 2017.
  14. J.Y. Lee, K.S. Min, New concept water purification module combined with renewable energy production, Desal. Water Treat., 38 (2012) 404–410.
  15. A. ElMekawy, S. Srikanth, K. Vanbroekhoven, H. De Wever, D. Pant, Bioelectro-catalytic valorization of dark fermentation effluents by acetate oxidizing bacteria in bioelectrochemical system (BES), J. Power Sources, 262 (2014) 183–191.
  16. S. Kondaveeti, B. Min, Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels, Water Res., 87 (2015) 137–144.
  17. H. Ma, Y. Guo, Y. Qin, Y.Y. Li, Nutrient recovery technologies integrated with energy recovery by waste biomass anaerobic digestion, Bioresour. Technol., 269 (2018) 520–531.
  18. X. Chen, D. Sun, X. Zhang, P. Liang, X. Huang, Novel selfdriven nutrient recovery cell with simultaneous wastewater purification, Sci. Rep., 5 (2015) 15744.
  19. Y.V. Nancharaiah, S.V. Mohan, P.N.L. Lens, Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems, Bioresour. Technol., 215 (2016) 173–185.
  20. J. Liu, W. Vyverman, Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions, Bioresour. Technol., 179 (2015) 234–242.
  21. C. Yan, L. Zhu, Y. Wang, The effects of various LED (light emitting diode) lighting strategies on simultaneous biogas upgrading and biogas slurry nutrient reduction by using of microalgae Chlorella sp., Appl. Energy, 178 (2016) 9–18.
  22. L. Zhu, C. Yan, Zh. Li, Microalgal cultivation with biogas slurry for biofuel production, Bioresour. Technol., 220 (2016) 629–636.
  23. M. Gizinska-Gorna, W. Czekała, K. Jozwiakowski, A. Lewicki, J. Dach, M. Marzec, A. Pytka, D. Janczak, A. Kowalczyk- Jusko, A. Listosz, The possibility of using plants from hybrid constructed wetland wastewater treatment plant for energy purposes, Ecol. Eng., 95 (2016) 534–541.
  24. C. Maucieri, A. Mietto, A.C. Barbera, M. Borin, Treatment performance and greenhouse gas emission of a pilot hybrid constructed wetland system treating digestate liquid fraction, Ecol. Eng., 94 (2016) 406–417.
  25. T. Avellan, P. Gremillion, Constructed wetlands for resource recovery in developing countries, Renewable Sustainable Energy Rev., 99 (2019) 42–57.
  26. I. Gajda, J. Greenman, C. Melhuisha, I. Ieropoulos, Self-sustainable electricity production from algae grown in a microbial fuel cell system, Biomass Bioenergy, 82 (2015) 87–93.
  27. R. Kakarla, B. Min, Sustainable electricity generation and ammonium removal by microbial fuel cell with a microalgae assisted cathode at various environmental conditions, Bioresour. Technol., 284 (2019) 161–167.
  28. A. Yakar, C. Türea, O.C. Türker, J. Vymazal, C. Saz, Impacts of various filtration media on wastewater treatment and bioelectric production in up-flow constructed wetland combined with microbial fuel cell (UCW-MFC), Ecol. Eng., 117 (2018) 120–132.
  29. P. Srivastava, A.K. Yadav, B.K. Mishra, The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland, Bioresour. Technol., 195 (2015) 223–230.
  30. P. Srivastava A.K. Yadav, V. Garaniya, R. Abbassi, Chapter 6.3: Constructed Wetland Coupled Microbial Fuel Cell Technology: Development and Potential Applications, In: Microbial Electrochemical Technology, Elsevier, 2019, 1021–1036.
  31. C. Sanchez-Sanchez, A. Gonzalez-Gonzalez, F. Cuadros-Salcedo, F. Cuadros-Blazquez, Using low-cost porous materials to increase biogas production: a case study in Extremadura (Spain), J. Cleaner Prod., 198 (2018) 1165–1172.
  32. H.A.J. Hoitnik, S. Matthew, M.S. Krause, New approaches to control of plant pathogens in irrigation water, Ohio Agricultural Research and Development Center, Spec. Circ., 173 (2000) 72–75.
  33. S. Sumiyati, P. Purwanto, S. Sudarno, Decreasing of BOD concentration on artificial domestic wastewater using anaerob biofilter reactor technology, E3S Web Conf., 31 (2018), doi: 10.1051/e3sconf/20183103016.
  34. A. Wanko, J. Laurent, P. Bois, R. Mosé, C. Wagner-Kocher, N. Bahlouli, S. Tiffay, B. Braun, P.W. Provo kluit, Assessment of rock wool as support material for on-site sanitation: hydrodynamic and mechanical characterization, Environ. Technol., 37 (2015) 369–380.
  35. R. Dauknys, A. Mazeikiene, Research of Wastewater Tertiary Treatment, In: “Environmental Engineering” 10th International Conference, Vilnius Gediminas Technical University, Lithuania, 2017.
  36. E. Fassmann-Beck, R. Simcock, S. Wang, R. Liu, Assessing the effects of bioretention’s engineered media composition and compaction on hydraulic conductivity and water holding capacity, J. Sustainable Water Built Environ., 1 (2015) 1–10.
  37. J.D. Rouse, Biofilm Pilot Study for Sewage Treatment with Composting of Waste Sludge on Yap, Water and Environmental Research Institute, Technical Report No. 161, Guam, 2016.
  38. H.Y. Zhong, H. Wang, X. Liu, Ch. Liu, G.Y. Liu, Y. Tian, X. Feng, Y.H. Chen, Degradation and characteristic changes of organic matter in sewage sludge using vermi-biofilter system, Chemosphere, 180 (2017) 57–64.
  39. A. Tankvics, D. Takács, J. Szendefy, B. Csukás, M. Varga, Residence time distribution-based analysis of an industrialscale biogas fermenter, Hung. J. Ind. Chem., 47 (2019) 43–51.