References
- K. Jeong, M. Park, T.H. Chong, Numerical model-based
analysis of energy-efficient reverse osmosis (EERO) process:
performance simulation and optimization, Desalination,
453 (2019) 10–21.
- A.E. Anqi, N. Alkhamis, A. Oztekin, Steady three dimensional
flow and mass transfer analyses for brackish water desalination
by reverse osmosis membranes, Int. J. Heat Mass Transfer, 101
(2016) 399–411.
- B. Bernales, P. Haldenwang, P. Guichardon, N. Ibaseta, Prandtl
model for concentration polarization and osmotic countereffects
in a 2-D membrane channel, Desalination, 404 (2017)
341–359.
- K. Bélafi-Bakó, Membrane Operations, Veszprémi Egyetemi
Kiadó, Veszprém, 2002.
- L.-Y. Hung, J.L. Shingjiang, J.-H. You, Mass-transfer modeling
of reverse-osmosis performance on 0.5–2% salty water,
Desalination, 265 (2011) 67–73.
- M. Mulder, Basic Principles of Membrane Technology, Kluwer
Academic Publishers, Dordrecht, 1996.
- M. Pontié, H. Dach, J. Leparc, M. Hafsi, A. Lhassani, Novel
approach combining physico-chemical characterizations and
mass transfer modelling of nanofiltration and low pressure
reverse osmosis membranes for brackish water desalination
intensification, Desalination, 221 (2008) 174–191.
- M.A. Ebrahim, S. Karan, A.G. Livingston, On the influence of
salt concentration on the transport properties of reverse osmosis
membranes in high pressure and high recovery desalination,
J. Membr. Sci., 594 (2019) 117339.
- M. Li, Predictive modelling of a commercial spiral wound
seawater reverse osmosis module, Chem. Eng. Res. Des.,
148 (2019) 440–450.
- A. Ruiz-García, I. Nuez, Long-term performance decline in a
brackish water reverse osmosis desalination plant. Predictive
model for the water permeability coefficient, Desalination,
397 (2016) 101–107.
- I.S. Al-Mutaz, M.A. Al-Ghunaimi, Performance of Reverse
Osmosis Units at High Temperatures, The IDA World Congress
on Desalination and Water Reuse, Bahrain, 2001.
- J. Lakner, G. Lakner, P. Bakonyi, K. Belafi-Bako, Temperature
dependence of transmembrane-chemi-sorption for waste
water with ammonia contents, Desal. Water Treat., (2020), doi:
10.5004/dwt.2020.25962.
- W.B. Baker, Membrane Technology and Applications, A John
John Wiley & Sons, Chichester (UK), 2012.
- T. Tse-Pei, Hole theory of the liquid state, Nature, 157 (1946)
873–874.
- Engineering ToolBox, Water - Dynamic and Kinematic Viscosity,
2004. Available at: https://www.engineeringtoolbox.com/waterdynamic-kinematic-viscosity-d_596.html
- T. Erdey Grúz, Fundamentals of Physical-Chemistry, Műszaki
Könyvkiadó, Budapest, 1972.
- J. Lakner, G. Lakner, G. Racz, Concentration dependence
modelling of reverse osmosis, Desal. Water Treat., 192 (2020) 437-443.
- J.E. Cadotte, R.J. Petersen, R.E. Larson, E.E. Erickson, A New
Thin Film Sea Water Reverse Osmosis Membrane, Presented at
the 5th Seminar on Membrane Separation Technology, Clemson
University, Clemson, SC, 1980.
- G. Lakner, J. Lakner, Mathematical modeling for stages in
germination of common reed (Phragmites australis), Acta Bot.
Hung., 52 (2010) 341–361.
- G. Lakner, J. Lakner, P. Bakonyi, K. Belafi-Bako, Kinetics of
transmembrane chemisorption for waste water with high
ammonia contents, Desal. Water Treat., 192 (2020) 444-450.
- A.M. Mayer, A. Poljakoff-Mayber, The Germination of Seeds,
3rd ed., Pergamon Press, London, 1982, pp. 37–43.