References

  1. K. Jeong, M. Park, T.H. Chong, Numerical model-based analysis of energy-efficient reverse osmosis (EERO) process: performance simulation and optimization, Desalination, 453 (2019) 10–21.
  2. A.E. Anqi, N. Alkhamis, A. Oztekin, Steady three dimensional flow and mass transfer analyses for brackish water desalination by reverse osmosis membranes, Int. J. Heat Mass Transfer, 101 (2016) 399–411.
  3. B. Bernales, P. Haldenwang, P. Guichardon, N. Ibaseta, Prandtl model for concentration polarization and osmotic countereffects in a 2-D membrane channel, Desalination, 404 (2017) 341–359.
  4. K. Bélafi-Bakó, Membrane Operations, Veszprémi Egyetemi Kiadó, Veszprém, 2002.
  5. L.-Y. Hung, J.L. Shingjiang, J.-H. You, Mass-transfer modeling of reverse-osmosis performance on 0.5–2% salty water, Desalination, 265 (2011) 67–73.
  6. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, 1996.
  7. M. Pontié, H. Dach, J. Leparc, M. Hafsi, A. Lhassani, Novel approach combining physico-chemical characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes for brackish water desalination intensification, Desalination, 221 (2008) 174–191.
  8. M.A. Ebrahim, S. Karan, A.G. Livingston, On the influence of salt concentration on the transport properties of reverse osmosis membranes in high pressure and high recovery desalination, J. Membr. Sci., 594 (2019) 117339.
  9. M. Li, Predictive modelling of a commercial spiral wound seawater reverse osmosis module, Chem. Eng. Res. Des., 148 (2019) 440–450.
  10. A. Ruiz-García, I. Nuez, Long-term performance decline in a brackish water reverse osmosis desalination plant. Predictive model for the water permeability coefficient, Desalination, 397 (2016) 101–107.
  11. I.S. Al-Mutaz, M.A. Al-Ghunaimi, Performance of Reverse Osmosis Units at High Temperatures, The IDA World Congress on Desalination and Water Reuse, Bahrain, 2001.
  12. J. Lakner, G. Lakner, P. Bakonyi, K. Belafi-Bako, Temperature dependence of transmembrane-chemi-sorption for waste water with ammonia contents, Desal. Water Treat., (2020), doi: 10.5004/dwt.2020.25962.
  13. W.B. Baker, Membrane Technology and Applications, A John John Wiley & Sons, Chichester (UK), 2012.
  14. T. Tse-Pei, Hole theory of the liquid state, Nature, 157 (1946) 873–874.
  15. Engineering ToolBox, Water - Dynamic and Kinematic Viscosity, 2004. Available at: https://www.engineeringtoolbox.com/waterdynamic-kinematic-viscosity-d_596.html
  16. T. Erdey Grúz, Fundamentals of Physical-Chemistry, Műszaki Könyvkiadó, Budapest, 1972.
  17. J. Lakner, G. Lakner, G. Racz, Concentration dependence modelling of reverse osmosis, Desal. Water Treat., 192 (2020) 437-443.
  18. J.E. Cadotte, R.J. Petersen, R.E. Larson, E.E. Erickson, A New Thin Film Sea Water Reverse Osmosis Membrane, Presented at the 5th Seminar on Membrane Separation Technology, Clemson University, Clemson, SC, 1980.
  19. G. Lakner, J. Lakner, Mathematical modeling for stages in germination of common reed (Phragmites australis), Acta Bot. Hung., 52 (2010) 341–361.
  20. G. Lakner, J. Lakner, P. Bakonyi, K. Belafi-Bako, Kinetics of transmembrane chemisorption for waste water with high ammonia contents, Desal. Water Treat., 192 (2020) 444-450.
  21. A.M. Mayer, A. Poljakoff-Mayber, The Germination of Seeds, 3rd ed., Pergamon Press, London, 1982, pp. 37–43.