References

  1. D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol., C, 6 (2005) 186–205.
  2. N. Ahalya, T.V. Ramachandra, R.D. Kanamadi, Biosorption of heavy metals, Res. J. Chem. Environ., 7 (2003) 71–79.
  3. E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide, J. Hazard. Mater., 136 (2006) 85–94.
  4. A.R. Khataeea, M.B. Kasiri, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes, J. Mol. Catal. A: Chem, 328 (2010) 8–26.
  5. Y. Chen, K. Wang, L. Lou, Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation, J. Photochem. Photobiol., A, 163 (2004) 281–287.
  6. M.H. Abdel Rehim, M.A. El-Samahy, A.A. Badawy, M.E. Mohramc Packing, Photocatalytic activity and antimicrobial properties of paper sheets modified with TiO2/sodium alginate nanocomposites, Carbohydr. Polym., 148 (2016) 194–199.
  7. Y. Hu, T. Chen, X. Dong, Z. Mei, Preparation and characterization of composite hydrogel beads based on sodium alginate, Polym. Bull., 72 (2015) 2857–2869.
  8. S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater., 170 (2009) 560–569.
  9. M.M. Abo El-Fadl, A.M. El-Aassar, A.A. Mohamed, Synthesis of nanocomposite membranes and their application in photocatalytic process for organic pollution removal from groundwater, East Nile Delta, Egypt, Desal. Water Treat., 55 (2015) 2951–2961.
  10. B.V.K. Naidu, K.V.S.K. Rao, T.M. Aminabhavi, Pervaporation separation of water + 1,4-dioxane and water + tetrahydrofuran mixtures using sodium alginate and its blend membranes with hydroxyethylcellulose—a comparative study, J. Membr. Sci., 260 (2005) 131–141.
  11. V. Vetrivel, K. Rajendran, V. Kalaiselvi, Synthesis and characterization of pure titanium dioxide nanoparticles by sol–gel method, Int. J. ChemTech Res., 7 (2015) 1090–1097.
  12. P.A. Sajid, T. Devasena, Synthesis and characterization of silica nanocomposite for bone application, Int. Res. J. Pharm., 3 (2012) 173–177.
  13. G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams, Photoluminesence and FTIR study of ZnO nanoparticles: the impurity and defect perspective, Phys. Status Solidi C, 3 (2006) 3577–3581.
  14. J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes, Carbon, 49 (2011) 2581–2602.
  15. S. Thakur, S. Pandey, O. Arotiba, Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of Methylene blue, Carbohydr. Polym., 153 (2016) 34–46.
  16. Y. Lu, J. Zhang, L. Ge, C. Han, P. Qiu, S. Fang, Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity, J. Colloid Interface Sci., 483 (2016) 146–153.
  17. X. Chun Song, Y.F. Zheng, Y. Zhao, H.Y. Yin, Hydrothermal synthesis and characterization of CNT@MoS2 nanotubes, Mater. Lett., 60 (2006) 2346–2348.
  18. X. Li, H. Lu, Y. Zhang, F. He, L. Jing, X. He, Fabrication of magnetic alginate beads with uniform dispersion of CoFe2O4 by the polydopamine surface functionalization for organic pollutants removal, Appl. Surf. Sci., 389 (2016) 567–577.
  19. F. Karkeh-Abadi, S. Saber-Samandari, S. Saber-Samandari, The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co(II) ions from aqueous solutions, J. Hazard. Mater., 315 (2016) 224–233.
  20. J.P. Soares, J.E. SantosI, G.O. Chierice, E.T.G. Cavalheiro, Thermal behavior of alginic acid and its sodium salt, Eclet. Quím., 29 (2004), ISSN 1678–4618.
  21. T. Tripathy, R.P. Singh, Characterization of polyacrylamidegrafted sodium alginate: a novel polymeric flocculant, J. Appl. Polym. Sci., 81 (2001) 3296–3308.
  22. J.F. Li, X. Zhen-Liang, Y. Hu, Y. Li-Yun, L. Min, Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane, Appl. Surf. Sci., 255 (2009) 4725–4732.
  23. Yang, Y., Wang, P., Zheng, Q. Preparation and properties of polysulfone/TiO2 composite ultrafiltration membranes, J. Polym. Sci., Part B: Polym. Phys., 44 (2006) 879–887.
  24. N. Gull, S.M. Khan, M.A. Munawar, M. Shafi, F. Anjum, M.T. Zahid Butt, T. Jamil, Synthesis and characterization of zinc oxide (ZnO) filled glass fiber reinforced polyester composites, Mater. Des., 67 (2015) 313–317.
  25. W. Nam, J. Kim, G. Han, Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor, Chemosphere, 47 (2002) 1019–1024.
  26. C.S. Kim, J.W. Shin, S.H. An, H.D. Jang, T.O. Kim, Photodegradation of volatile organic compounds using zirconiumdoped TiO2/SiO2 visible light photocatalysis, Chem. Eng. J., 204–206 (2012) 40–47.
  27. M. Božič, V. Vivod, R. Vogrinčič, I. Ban, G. Jakša, S. Hribernik, D. Fakin, V. Kokol, Enhanced catalytic activity of the surface modified TiO2-MWCNT nanocomposites under visible light, J. Colloid Interface Sci., 465 (2016) 93–105.
  28. J. Cunningham, G. Al-Sayyed, S. Srijaranai, Chapter 22: Adsorption of Model Pollutants onto TiO2 Particles in Relation to Photo-Remediation of Contaminated Water, G. Helz, R. Zepp, D. Crosby, Eds., Aquatic and Surface Photochemistry, Lewis Publications, CRC Press, Boca Raton, FL, 1994, pp. 317–348.
  29. A. Olivira-Campose, O. Peter, L. Poulios, Photocatalytic Degradation Studies on Malachite Green, In: Environment 2010: Situation and Perspectives for the European Union 6–10 May 2003, Porto, Portugal, 2003, pp. 1–6.