References
- D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic
degradation of organic pollutants, J. Photochem. Photobiol., C,
6 (2005) 186–205.
- N. Ahalya, T.V. Ramachandra, R.D. Kanamadi, Biosorption of
heavy metals, Res. J. Chem. Environ., 7 (2003) 71–79.
- E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, Photocatalytic
decolorization and degradation of dye solutions and
wastewaters in the presence of titanium dioxide, J. Hazard.
Mater., 136 (2006) 85–94.
- A.R. Khataeea, M.B. Kasiri, Photocatalytic degradation of
organic dyes in the presence of nanostructured titanium
dioxide: influence of the chemical structure of dyes, J. Mol.
Catal. A: Chem, 328 (2010) 8–26.
- Y. Chen, K. Wang, L. Lou, Photodegradation of dye pollutants
on silica gel supported TiO2 particles under visible light
irradiation, J. Photochem. Photobiol., A, 163 (2004) 281–287.
- M.H. Abdel Rehim, M.A. El-Samahy, A.A. Badawy, M.E.
Mohramc
Packing, Photocatalytic activity and antimicrobial
properties of paper sheets modified with TiO2/sodium alginate
nanocomposites, Carbohydr. Polym., 148 (2016) 194–199.
- Y. Hu, T. Chen, X. Dong, Z. Mei, Preparation and characterization
of composite hydrogel beads based on sodium alginate, Polym.
Bull., 72 (2015) 2857–2869.
- S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of
making TiO2 and ZnO visible light active, J. Hazard. Mater.,
170 (2009) 560–569.
- M.M. Abo El-Fadl, A.M. El-Aassar, A.A. Mohamed, Synthesis
of nanocomposite membranes and their application in
photocatalytic process for organic pollution removal from
groundwater, East Nile Delta, Egypt, Desal. Water Treat.,
55 (2015) 2951–2961.
- B.V.K. Naidu, K.V.S.K. Rao, T.M. Aminabhavi, Pervaporation
separation of water + 1,4-dioxane and water + tetrahydrofuran
mixtures using sodium alginate and its blend membranes with
hydroxyethylcellulose—a comparative study, J. Membr. Sci.,
260 (2005) 131–141.
- V. Vetrivel, K. Rajendran, V. Kalaiselvi, Synthesis and
characterization of pure titanium dioxide nanoparticles by sol–gel method, Int. J. ChemTech Res., 7 (2015) 1090–1097.
- P.A. Sajid, T. Devasena, Synthesis and characterization of silica
nanocomposite for bone application, Int. Res. J. Pharm., 3 (2012)
173–177.
- G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams,
Photoluminesence and FTIR study of ZnO nanoparticles: the
impurity and defect perspective, Phys. Status Solidi C, 3 (2006)
3577–3581.
- J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier,
Evaluating the characteristics of multiwall carbon nanotubes,
Carbon, 49 (2011) 2581–2602.
- S. Thakur, S. Pandey, O. Arotiba, Development of a sodium
alginate-based organic/inorganic superabsorbent composite
hydrogel for adsorption of Methylene blue, Carbohydr. Polym.,
153 (2016) 34–46.
- Y. Lu, J. Zhang, L. Ge, C. Han, P. Qiu, S. Fang, Synthesis of novel
AuPd nanoparticles decorated one-dimensional ZnO nanorod
arrays with enhanced photoelectrochemical water splitting
activity, J. Colloid Interface Sci., 483 (2016) 146–153.
- X. Chun Song, Y.F. Zheng, Y. Zhao, H.Y. Yin, Hydrothermal
synthesis and characterization of CNT@MoS2 nanotubes, Mater.
Lett., 60 (2006) 2346–2348.
- X. Li, H. Lu, Y. Zhang, F. He, L. Jing, X. He, Fabrication of
magnetic alginate beads with uniform dispersion of CoFe2O4
by the polydopamine surface functionalization for organic
pollutants removal, Appl. Surf. Sci., 389 (2016) 567–577.
- F. Karkeh-Abadi, S. Saber-Samandari, S. Saber-Samandari,
The impact of functionalized CNT in the network of sodium
alginate-based nanocomposite beads on the removal of Co(II)
ions from aqueous solutions, J. Hazard. Mater., 315 (2016)
224–233.
- J.P. Soares, J.E. SantosI, G.O. Chierice, E.T.G. Cavalheiro,
Thermal behavior of alginic acid and its sodium salt, Eclet.
Quím., 29 (2004), ISSN 1678–4618.
- T. Tripathy, R.P. Singh, Characterization of polyacrylamidegrafted
sodium alginate: a novel polymeric flocculant, J. Appl.
Polym. Sci., 81 (2001) 3296–3308.
- J.F. Li, X. Zhen-Liang, Y. Hu, Y. Li-Yun, L. Min, Effect of TiO2
nanoparticles on the surface morphology and performance
of microporous PES membrane, Appl. Surf. Sci., 255 (2009)
4725–4732.
- Yang, Y., Wang, P., Zheng, Q. Preparation and properties of
polysulfone/TiO2 composite ultrafiltration membranes, J. Polym.
Sci., Part B: Polym. Phys., 44 (2006) 879–887.
- N. Gull, S.M. Khan, M.A. Munawar, M. Shafi, F. Anjum,
M.T. Zahid Butt, T. Jamil, Synthesis and characterization of
zinc oxide (ZnO) filled glass fiber reinforced polyester composites,
Mater. Des., 67 (2015) 313–317.
- W. Nam, J. Kim, G. Han, Photocatalytic oxidation of methyl
orange in a three-phase fluidized bed reactor, Chemosphere,
47 (2002) 1019–1024.
- C.S. Kim, J.W. Shin, S.H. An, H.D. Jang, T.O. Kim, Photodegradation
of volatile organic compounds using zirconiumdoped
TiO2/SiO2 visible light photocatalysis, Chem. Eng. J.,
204–206 (2012) 40–47.
- M. Božič, V. Vivod, R. Vogrinčič, I. Ban, G. Jakša, S. Hribernik,
D. Fakin, V. Kokol, Enhanced catalytic activity of the surface
modified TiO2-MWCNT nanocomposites under visible light,
J. Colloid Interface Sci., 465 (2016) 93–105.
- J. Cunningham, G. Al-Sayyed, S. Srijaranai, Chapter 22:
Adsorption of Model Pollutants onto TiO2 Particles in Relation
to Photo-Remediation of Contaminated Water, G. Helz, R. Zepp,
D. Crosby, Eds., Aquatic and Surface Photochemistry, Lewis
Publications, CRC Press, Boca Raton, FL, 1994, pp. 317–348.
- A. Olivira-Campose, O. Peter, L. Poulios, Photocatalytic
Degradation Studies on Malachite Green, In: Environment
2010: Situation and Perspectives for the European Union 6–10
May 2003, Porto, Portugal, 2003, pp. 1–6.