References

  1. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301–311.
  2. M. Montgomery, M. Elimelech, Water and sanitation in developing countries: including health in the equation, Environ. Sci. Technol., 41 (2007) 17–24.
  3. P. Nasr, H. Sewilam, Forward osmosis: an alternative sustainable technology and potential applications in water industry, Clean Technol. Environ. Policy, 17 (2015) 2079–2090.
  4. S.Y. Park, H.W. Ahn, J.W. Chung, S.Y. Kwak, Magnetic corehydrophilic shell nanosphere as stability-enhanced draw solute for forward osmosis (FO) application, Desalination, 397 (2016) 22–29.
  5. J. Su, S. Zhang, M.M. Ling, T.-S. Chung, Forward osmosis: an emerging technology for sustainable supply of clean water, Clean Technol. Environ. Policy, 14 (2012) 507–511.
  6. P. Nasr, H. Sewilam, Investigating fertilizer drawn forward osmosis process for groundwater desalination for irrigation in Egypt, Desal. Water Treat., 3994 (2016) 1–11.]
  7. O.A. Attallah, M.A. Al-Ghobashy, M. Nebsen, R. El-Kholy, M.Y. Salem, Assessment of pectin-coated magnetite nanoparticles in low-energy water desalination applications, Environ. Sci. Pollut. Res., 25 (2018) 18476–18483.
  8. Q. Ge, L. Yang, J. Cai, W. Xu, Q. Chen, M. Liu, Hydroacid magnetic nanoparticles in forward osmosis for seawater desalination and efficient regeneration via integrated magnetic and membrane separations, J. Memb. Sci., 520 (2016) 550–559.
  9. L. Chekli, Y. Kim, S. Phuntsho, S. Li, N. Ghaffour, T. Leiknes, H.K. Shon, Evaluation of fertilizer-drawn forward osmosis for sustainable agriculture and water reuse in arid regions, J. Environ. Manage., 187 (2017) 137–145.
  10. K.B. Petrotos, P.C. Quantick, H. Petropakis, Direct osmotic concentration of tomato juice in tubular membrane – module configuration. II. The effect of using clarified tomato juice on the process performance, J. Membr. Sci., 160 (1999) 171–177.
  11. F. Zhang, K.S. Brastad, Z. He, Integrating forward osmosis into microbial fuel cells for wastewater treatment, water extraction and bioelectricity generation, Environ. Sci. Technol., 45 (2011) 6690–6696.
  12. C. Boo, Y.F. Khalil, M. Elimelech, Performance evaluation of trimethylamine–carbon dioxide thermolytic draw solution for engineered osmosis, J. Membr. Sci., 473 (2015) 302–309.
  13. A.J. Ansari, F.I. Hai, W.E. Price, L.D. Nghiem, Phosphorus recovery from digested sludge centrate using seawater-driven forward osmosis, Sep. Purif. Technol., 163 (2016) 1–7.
  14. Y. Cai, W. Shen, J. Wei, T.H. Chong, R. Wang, W.B. Krantz, A.G. Fane, X. Hu, Energy-efficient desalination by forward osmosis using responsive ionic liquid draw solutes, Environ. Sci. Water Res. Technol., 1 (2015) 341–347.
  15. C.J. Orme, A.D. Wilson, 1-Cyclohexylpiperidine as a thermolytic draw solute for osmotically driven membrane processes, Desalination, 371 (2015) 126–133.
  16. S. Laohaprapanon, Y.-J. Fu, C.-C. Hu, S.-J. You, H.-A. Tsai, W.-S. Hung, K.-R. Lee, J.-Y. Lai, Evaluation of a natural polymerbased cationic polyelectrolyte as a draw solute in forward osmosis, Desalination, 421 (2017) 72–78.
  17. H. Cui, H. Zhang, F. Yang, Preparation and properties of electric-sensitive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels as draw agent for forward osmosis, Desal. Water Treat., 71 (2017) 280–288.
  18. H. Han, J.Y. Lee, X. Lu, Thermoresponsive nanoparticles + plasmonic nanoparticles = photoresponsive heterodimers: facile synthesis and sunlight-induced reversible clustering, Chem. Commun., 49 (2013) 6122–6124.
  19. D.S. Wendt, C.J. Orme, G.L. Mines, A.D. Wilson, Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process, Desalination, 374 (2015) 81–91.
  20. O.A. Bamaga, A. Yokochi, B. Zabara, A.S. Babaqi, Hybrid FO/RO desalination system: preliminary assessment of osmotic energy recovery and designs of new FO membrane module configurations, Desalination, 268 (2011) 163–169.
  21. A. Razmjou, M.R. Barati, G.P. Simon, K. Suzuki, H. Wang, Fast deswelling of nanocomposite polymer hydrogels via magnetic field-induced heating for emerging FO desalination, Environ. Sci. Technol., 47 (2013) 6297–6305.
  22. M.M. Ling, T.-S. Chung, Surface-dissociated nanoparticle draw solutions in forward osmosis and the regeneration in an integrated electric field and nanofiltration system, Ind. Eng. Chem. Res., 51 (2012) 15463–15471.
  23. R. Alnaizy, A. Aidan, M. Qasim, Draw solute recovery by metathesis precipitation in forward osmosis desalination, Desal. Water Treat., 51 (2013) 5516–5525.
  24. D.J. Johnson, W.A. Suwaileh, A.W. Mohammed, N. Hilal, Osmotic’s potential: an overview of draw solutes for forward osmosis, Desalination, 434 (2018) 100–120.
  25. Y. Zhong, X. Feng, W. Chen, X. Wang, K.W. Huang, Y. Gnanou, Z. Lai, Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water, Environ. Sci. Technol., 50 (2016) 1039–1045.
  26. N.T. Hau, S.S. Chen, N.C. Nguyen, K.Z. Huang, H.H. Ngo, W. Guo, Exploration of EDTA sodium salt as novel draw solution in forward osmosis process for dewatering of high nutrient sludge, J. Membr. Sci., 455 (2014) 305–311.
  27. D. Li, X. Zhang, G.P. Simon, H. Wang, Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance, Water Res., 47 (2013) 209–215.
  28. Q. Ge, J. Su, T.-S. Chung, G. Amy, Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes, Ind. Eng. Chem. Res., 50 (2011) 382–388.
  29. M.M. Ling, K.Y. Wang, T.S. Chung, Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse, Ind. Eng. Chem. Res., 49 (2010) 5869–5876.
  30. M. Guizani, T. Maeda, R. Ito, N. Funamizu, Synthesis and characterization of magnetic nanoparticles as a candidate draw solution for forward osmosis, J. Water Environ. Technol., 16 (2018) 63–71.
  31. Y. Na, S. Yang, S. Lee, Evaluation of citrate-coated magnetic nanoparticles as draw solute for forward osmosis, Desalination, 347 (2014) 34–42.
  32. A. Tayel, P. Nasr, H. Sewilam, Forward osmosis desalination using pectin-coated magnetic nanoparticles as a draw solution, Clean Technol. Environ. Policy, 21 (2019) 1617–1628.
  33. Y. Mino, D. Ogawa, H. Matsuyama, Functional magnetic particles providing osmotic pressure as reusable draw solutes in forward osmosis membrane process, Adv. Powder Technol., 27 (2016) 2136–2144.
  34. P. Dey, E.L. Izake, Magnetic nanoparticles boosting the osmotic efficiency of a polymeric FO draw agent: effect of polymer conformation, Desalination, 373 (2015) 79–85.
  35. O.A. Attallah, M.A. Al-Ghobashy, M. Nebsen, M.Y. Salem, Adsorptive removal of fluoroquinolones from water by pectinfunctionalized magnetic nanoparticles: process optimization using a spectrofluorimetric assay, ACS Sustainable Chem. Eng., 5 (2017) 133–145.
  36. P.L. Hariani, M. Faizal, R. Ridwan, M. Marsi, D. Setiabudidaya, Synthesis and properties of Fe3O4 nanoparticles by coprecipitation method to removal procion dye, Int. J. Environ. Sci. Dev., 4 (2013) 336–340.
  37. H. Bai, Z. Liu, D.D. Sun, Highly water soluble and recovered dextran coated Fe3O4 magnetic nanoparticles for brackish water desalination, Sep. Purif. Technol., 81 (2011) 392–399.
  38. Q. Zhao, N. Chen, D. Zhao, X. Lu, Thermoresponsive magnetic nanoparticles for seawater desalination, ACS Appl. Mater. Interfaces, 5 (2013) 11453–11461.
  39. T. Abitbol, D. Kam, Y. Levi-Kalisman, D.G. Gray, O. Shoseyov, Surface charge influence on the phase separation and viscosity of cellulose nanocrystals, Langmuir, 34 (2018) 3925–3933.
  40. J. Araki, M. Wada, S. Kuga, T. Okano, Influence of surface charge on viscosity behavior of cellulose microcrystal suspension, J. Wood Sci., 45 (1999) 258–261.
  41. J. Cannon, D. Kim, S. Maruyama, J. Shiomi, Influence of ion size and charge on osmosis, J. Phys. Chem. B, 116 (2012) 4206–4211.
  42. A.J. Ujam, K.O. Enebe, Experimental analysis of particle size distribution using electromagnetic sieve, Am. J. Eng. Res., 02 (2013) 77–85.
  43. R.Y. Hong, B. Feng, L.L. Chen, G.H. Liu, H.Z. Li, Y. Zheng, D.G. Wei, Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles, Biochem. Eng. J., 42 (2008) 290–300.
  44. D. Van Quy, N.M. Hieu, N.H. Nam, H.H. Nguyen, Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses, J. Nanomater., 9 (2013) 1–6.
  45. X. Zeng, Y. Sun, H. Ye, C. Pan, B. Hu, W. Li, Novel and efficient method for immobilization and stabilization of β-dgalactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles, J. Mol. Catal. B: Enzym., 61 (2009) 208–215.
  46. Z. Shabani, A. Rahimpour, Chitosan ‑ and dehydroascorbic acid ‑ coated Fe3O4 nanoparticles : preparation, characterization and their potential as draw solute in forward osmosis process, Iran. Polym. J., 25 (2016) 887–895.