References
- M. El Bastawesy, S. Adel, I.N.L. Mohamed, Management
of waste water discharge within the Nile Valley of Egypt:
the collapse of Al Ballanah waste water’s lake in Aswan in
September 2013, Egypt. J. Remote Sens. Space Sci., 21 (2018)
149–158.
- http://www.biologydiscussion.com/ecology/wastewater/wastewater-problem-and-its-treatment-ecology/70914
- P. Hoornaert, Reverse Osmosis: EPO Applied Technology
Series, v4, 1984, pp. 97–105, ISBN 0-08-031144-X, Pergamon
Press Ltd., Headington Hill Hall, Oxford OX3 0BW, England.
- V. Barbosa Brião, A.C. Vieira Salla, T. Miorando, M. Hemkemeier,
D.P. Cadore Favaretto, Water recovery from dairy rinse water by
reverse osmosis: giving value to water and milk solids, Resour.
Conserv. Recycl., 140 (2019) 313–323.
- Y. Uojima, Operation of reverse osmosis process for industrial
waste water reclamation, Desalination, 23 (1977) 87–95.
- C.R. Bartels, Reverse Osmosis Membranes Play Key Role in
Wastewater Reclamation, 2006, Available at: https://www.waterworld.com/articles/wwi/print/volume-21/issue-6/features/reverse-osmosis-membranes-play-key-role-inwastewater-reclamation.html
- M.A. Sharaf, A.S. Nafey, L. Garcia-Rodriguez, Thermoeconomic
analysis of a combined solar organic Rankine cycle
reverse osmosis desalination process with different energy
recovery configurations, Desalination, 261 (2010) 138–147.
- M.A. Sharaf Eldean, Design and Simulation of Solar Desalination
Systems, Ph.D. Thesis, 2011, Suez Canal University, Faculty of
Petroleum & Mining Engineering, Bibliography No.: 11114571.
- A.S. Nafey, M.A. Sharaf. Combined solar organic Rankine
cycle with reverse osmosis desalination process: energy, exergy,
and cost evaluations, Renewable Energy, 35 (2010) 2571–2580.
- M.A. Sharaf, Thermo-economic comparisons of different types
of solar desalination processes, J. Solar Energy Eng., 134 (2012)
031001.
- A.M. Delgado-Torres, L. García-Rodríguez, V.J. Romero-Ternero, Preliminary design of a solar thermal-powered seawater
reverse osmosis system, Desalination, 216 (2007) 292–305.
- A.M. Delgado-Torres, L. García-Rodríguez, Status of solar
thermal driven reverse osmosis desalination, Desalination,
216 (2007) 242–251.
- A.M. Delgado-Torres, L. García-Rodríguez, Comparison of
solar technologies for driving a desalination system by means
of an organic Rankine cycle, Desalination, 216 (2007) 276–291.
- E.Sh. Mohamed, G. Papadakis, E. Mathioulakis, V. Belessiotis,
A direct coupled photovoltaic seawater reverse osmosis
desalination system toward battery based systems-a technical
and economical experimental comparative study, Desalination
221 (2008) 17–22.
- A.M. Helal, S.A. Al-Malek, E.S. Al-Katheeri, Economic
feasibility of alternative designs of a PV-RO desalination unit
for remote areas in the United Arab Emirates, Desalination,
221 (2008) 1–16.
- D. Manolakos, E.Sh. Mohamed, I. Karagiannis, G. Papadakis,
Technical and economic comparison between PV-RO system
and RO-Solar Rankine system. Case study: Thirasia Island,
Desalination, 221 (2008) 37–46.
- G.E. Ahmad, J. Schmid, Feasibility study of brackish water
desalination in the Egyptian deserts and rural regions using
PV systems, Energy Convers. Manage., 43 (2002) 2641–2649.
- E. Tzen, K. Perrakis, P. Baltas, Design of a standalone PV-desalination
system for rural areas, Desalination, 119 (1998)
327–334.
- A.A. Hossam-Eldin, K.A. Abed, K.H. Youssef, H. Kotb, Technoeconomic
optimization and new modeling technique of
PV-wind-reverse osmosis desalination plant at variable load
conditions, Int. J. Environ. Sci. Dev., 10 (2019) 223–230.
- C. Ghenai, A. Merabet, T. Salameh, E.C. Pigem, Grid-tied and
stand-alone hybrid solar power system for desalination plant,
Desalination, 435 (2018) 172–180.
- M. Gökçek, Integration of hybrid power (wind-photovoltaic diesel-battery) and seawater reverse osmosis systems for
small-scale desalination applications, Desalination, 435 (2018)
210–220.
- M. Laissaoui, P. Palenzuela, M.A. Sharaf Eldean, D. Nehari,
D.-C. Alarcón-Padilla, Techno-economic analysis of a standalone
solar desalination plant at variable load conditions, Appl.
Therm. Eng.,133 (2018) 659–670.
- Z. Wang, X. Lin, N. Tong, Z. Li, S. Sun, C. Liu, Optimal planning
of a 100% renewable energy island supply system based
on the integration of a concentrating solar power plant and
desalination units, Int. J. Electr. Power Energy Syst., 117 (2020)
105707.
- N. Mousavi, G. Kothapalli, D. Habibi, M. Khiadani, C.K. Das,
An improved mathematical model for a pumped hydro storage
system considering electrical, mechanical, and hydraulic losses,
Appl. Energy, 247 (2019) 228–236.
- H. Zhang, Z. Lu, W. Hu, Y. Wang, L. Dong, J. Zhang, Coordinated
optimal operation of hydro–wind–solar integrated systems,
Appl. Energy, 242 (2019) 883–896.
- Z. Liu, Z. Zhang, R. Zhuo, X. Wang, Optimal operation of
independent regional power grid with multiple wind solar hydro-battery power, Appl. Energy, 235 (2019) 1541–1550.
- S. Camal, F. Teng, A. Michiorri, G. Kariniotakis, L. Badesa,
Scenario generation of aggregated wind, photovoltaics and
small hydro production for power systems applications, Appl.
Energy, 242 (2019) 1396–1406.
- A.S. Kocaman, V.Modi, Value of pumped hydro storage in a
hybrid energy generation and allocation system, Appl. Energy,
205 (2017) 1202–1215.
- S. Han, L.-na. Zhang, Y.-q. Liu, H. Zhang, J. Yan, L. Li,
X.-h. Lei, X. Wang, Quantitative evaluation method for the
complementarity of wind–solar–hydro power and optimization
of wind–solar ratio, Appl. Energy, 236 (2019) 973–984.
- A.S. Nafey, M.A. Sharaf, L. Garcia-Rodriguez, A new visual
library for design and simulation of solar desalination systems
(SDS), Desalination, 259 (2010) 197–207.
- M.A. Sharaf Eldean, A.M. Soliman, A new visual library for
modeling and simulation of renewable energy desalination
systems (REDS), Desal. Water Treat., 51 (2013) 6905–6920.
- https://globalsolaratlas.info/?c=22.828248,23.176858,5&s=26.818689,20.291559
- https://www.redslibrary.com/product-page/solar-radiationmodel
- M.A. Sharaf Eldean, K.M. Rafi, A.M. Soliman, Performance
analysis of different working gases for concentrated solar gas
engines: Stirling & Brayton, Energy Convers. Manage., 150
(2017) 651–668.
- V. Siva Reddy, S.C. Kaushik, S.K. Tyagi, Exergetic analysis and
performance evaluation of parabolic dish Stirling engine solar
power plant, Int. J. Energy Res., 37 (2013) 1287–1301.
- A.Z. Hafez, A. Soliman, K.A. El-Metwally, I.M. Ismail, Solar
parabolic dish Stirling engine system design, simulation,
and thermal analysis, Energy Convers. Manage., 126 (2016)
60–75.
- K. Lovegrove, W. Stein, Concentrating Solar Power Technology,
Principles, Developments and Applications, 1st ed., Woodhead
Publishing, 19th October 2012, ISBN: 9780857096173.
- Renewable Energy Technologies: Cost Analysis Series,
Vol. 1, International Renewable Energy Agency IRENA,
Available at: https://www.irena.org//media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf
- W. Mark, B. Craig, Optimization of seawater RO systems
design, Desalination, 173 (2005) 1–12.
- H.T. El-Dessouky, H.M. Ettouney, Fundamentals of Salt
Water Desalination, Elsevier Science, 20th March 2002, ISBN:
9780080532127.
- B. Kongtragool, S. Wongwises, A review of solar-powered
Stirling engines and low temperature differential Stirling
engines, Renewable Sustainable Energy Rev., 7 (2003) 131–154.
- P.K. Nag, Basic and Applied Thermodynamics, Tata McGraw-Hill, New Delhi, 2002.
- A.M.A. Al-Dafaie, M.-E. Dahdolan, M.A. Al-Nimr, Utilizing the
heat rejected from a solar dish Stirling engine in potable water
production, Solar Energy, 136 (2016) 317–326.
- J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal
Processes, John Wiley & Sons Inc., Hoboken, NJ, 2013.
- P.R. Fraser, Stirling Dish System Performance Prediction Model,
M.Sc. Thesis, University of Wisconsin-Madison, Madison, 2008.
- Z. Husain, Mohd.Z. Abdullah, Z. Alimuddin, Basic Fluid
Mechanics and Hydraulic Machines, 2008.
- Higher Institute of Agricultural Techniques, Al-Marj, Libya,
Available at: https://1742268.site123.me