References
- L. Lapidus, N.R. Amundson, Mathematics of adsorption in
beds. VI. The effect of longitudinal diffusion in ion exchange
and chromatographic columns, J. Phys. Chem., 56 (1952)
984–988.
- J.R. Philip, Numerical solution of equations of the diffusion
type with diffusivity concentration-dependent, Trans. Faraday
Soc., 51 (1955) 885–892.
- A. Ogata, R.B. Banks, A Solution of the Differential Equation
of Longitudinal Dispersion in Porous Media, Geological Survey
Professional Paper 411-A, United States Government Printing
Office, Washington, 1961, pp. A1–A9.
- H. Brenner, The diffusion model of longitudinal mixing in beds
of finite length. Numerical values, Chem. Eng. Sci., 17 (1962)
229–243.
- L.W. Gelhar, C. Welty, K.R. Rehfeldt, A critical review of data
on field-scale dispersion in aquifers, Water Resour. Res., 28
(1992) 1955–1974.
- F.T. Lindstrom, R. Haque, V.H. Freed, L. Boersma, The
movement of some herbicides in soils. Linear diffusion and
convection of chemicals in soils, Environ. Sci. Technol., 1 (1967)
561–565.
- F.J. Leij, N. Toride, M.Th. van Genuchten, Analytical solutions
for non-equilibrium solute transport in three-dimensional
porous media, J. Hydrol., 151 (1993) 193–228.
- M.A. Marino, Numerical and analytical solutions of dispersion
in a finite, adsorbing porous medium, Water Resour. Bull.,
10 (1974) 81–90.
- A. Ogata, Mathematics of Dispersion with Linear Adsorption
Isotherm, Geological Survey Professional Paper 411-H,
United States Government Printing Office, Washington, 1964,
pp. H1–H9.
- A. Ogata, Theory of Dispersion in a Granular Medium,
Geological Survey Professional Paper 411-I, United States
Government Printing Office, Washington, 1970, I1–I34.
- N. Toride, F.J. Leij, M.Th. van Genuchten, The CXTFIT Code
for Estimating Transport Parameters from Laboratory or
Field Tracer Experiment, Version 2.0, Research Report No.
137, U.S. Salinity Laboratory, Agricultural Research Service,
U.S. Department of Agriculture, Riverside, California, 1995,
pp. 1–121.
- M.Th. van Genuchten, Analytical solutions for chemical
transport with simultaneous adsorption, zero-order production
and first-order decay, J. Hydrol., 49 (1981) 213–233.
- M.Th. van Genuchten, W.J. Alves, Analytical Solutions of the
One-Dimensional Convective-Dispersive Solute Transport
Equation, U.S. Department of Agriculture, Technical Bulletin
No. 1661, 1982, 151 p.
- M.Th. van Genuchten, J.C. Parker, Boundary conditions for
displacement experiments through short laboratory soil
columns, Soil Sci. Soc. Am. J., 48 (1984) 703–708.
- M.Th. van Genuchten, P.J. Wierenga, Mass transfer studies in
sorbing porous media I. Analytical solutions, Soil Sci. Soc. Am.
J., 40 (1976) 473–481.
- F.T. Tracy, 1-D, 2-D, and 3-D analytical solutions of unsaturated
flow in groundwater, J. Hydrol., 170 (1995) 199–214.
- A. Kumar, D.K. Jaiswal, N. Kumar, Analytical solutions of
one-dimensional advection–diffusion equation with variable
coefficients in a finite domain, J. Earth Syst. Sci., 118 (2009)
539–549.
- A. Kumar, D.K. Jaiswal, N. Kumar, Analytical solutions to
one-dimensional advection–diffusion equation with variable
coefficients in semi-infinite media, J. Hydrol., 380 (2010)
330–337.
- D.K. Jaiswal, N. Kumar, Analytical solutions of advection–
dispersion equation for varying pulse type input point source
in one-dimension, Int. J. Eng. Sci. Technol., 3 (2011) 22–29.
- A. Daga, V.H. Pradhan, Analytical solution of advection–
diffusion equation in homogeneous medium, Int. J. Sci.
Spirituality Bus. Technol., 2 (2013) 65–69.
- A. Mojtabi, M.O. Deville, One-dimensional linear advection–
diffusion equation: analytical and finite element solutions,
Comput. Fluids, 107 (2015) 189–195.
- M.L. Puri, D.A. Ralescu, Differentials of fuzzy functions,
J. Math. Anal. Appl., 91 (1983) 552–558.
- M. Hukuhara, Intégration des applications mesurables dont
la valeur est un compact convexe, Funkcial. Ekvac., 10 (1967)
205–233 (in French).
- O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst.,
24 (1987) 301–317.
- S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets Syst.,
24 (1987) 319–330.
- J.J. Nieto, R. Rodríguez-López, Bounded solutions for fuzzy
differential and integral equations, Chaos, Solitons Fractals,
27 (2006) 1376–1386.
- D. Vorobiev, S. Seikkala, Towards the theory of fuzzy differential
equations, Fuzzy Sets Syst., 125 (2002) 231–237.
- D. O’Regan, V. Lakshmikantham, J.J. Nieto, Initial and boundary
value problems for fuzzy differential equations, Nonlinear
Anal., 54 (2003) 405–415.
- T.G. Bhaskar, V. Lakshmikantham, V. Devi, Revisiting fuzzy
differential equations, Nonlinear Anal., 58 (2004) 351–358.
- P. Diamond, Brief note on the variation of constants formula for
fuzzy differential equations, Fuzzy Sets Syst., 129 (2002) 65–71.
- B. Bede, S.G. Gal, Generalizations of the differentiability of
fuzzy-number-valued functions with applications to fuzzy
differential equations, Fuzzy Sets Syst., 151 (2005) 581–599.
- B. Bede, A note on “two-point boundary value problems
associated with non-linear fuzzy differential equations”, Fuzzy
Sets Syst., 157 (2006) 986–989.
- L. Stefanini, A generalization of Hukuhara difference and
division for interval and fuzzy arithmetic, Fuzzy Sets Syst.,
161 (2010) 1564–1584.
- T. Allahviranloo, Z. Gouyandeh, A. Armand, A. Hasanoglu,
On fuzzy solutions for heat equation based on generalized
Hukuhara differentiability, Fuzzy Sets Syst., 265 (2015) 1–23.
- C.V. Negoita, D.A. Ralescu, Representation theorems for fuzzy
concepts, Kybernetes, 4 (1975) 169–174.
- R. Goetschel Jr., W. Voxman, Elementary fuzzy calculus, Fuzzy
Sets Syst., 18 (1986) 31–43.
- B. Bede, L. Stefanini, Generalized differentiability of fuzzyvalued
functions, Fuzzy Sets Syst., 230 (2013) 119–141.
- A. Khastan, J.J. Nieto, A boundary value problem for second
order fuzzy differential equations, Nonlinear Anal., 72 (2010)
3583–3593.
- S.P. Mondal, T.K. Roy, Solution of second order linear differential
equation in fuzzy environment, Ann. Fuzzy Math. Inf., x (2015)
1–25.
- B. Bede, L. Stefanini, Solution of Fuzzy Differential Equations
with Generalized Differentiability using LU-Parametric
Representation, X. Luo, Ed., Advances in Intelligent Systems
Research, Proceedings of the 7th conference of the European
Society for Fuzzy Logic and Technology (EUSFLAT-11), Aixles-
Bains, France, 2011, pp. 785–790.
- C. Tzimopoulos, K. Papadopoulos, C. Evangelides, B. Papadopoulos,
Fuzzy solution to the unconfined aquifer problem,
Water, 11 (2019) 1–19.
- L. Stefanini, B. Bede, Some Notes on Generalized Hukuhara
Differentiability of Interval-valued Functions and Interval
Differential Equations, WP-EMS Working Papers Series in
Economics, Mathematics and Statistics, WP-EMS # 2008/03,
pp. 1–37. Available at: http://www.econ.uniurb.it/RePEc/urb/
wpaper/WP_12_08.pdf.
- B. Bede, S.G. Gal, Almost periodic fuzzy-number-valued
functions, Fuzzy Sets Syst., 147 (2004) 385–403.
- N.A. Shah, I.L. Animasaun, R.O. Ibraheem, H.A. Babatunde,
N. Sandeep, I. Pop, Scrutinization of the effects of Grashof
number on the flow of different fluids driven by convection
over various surfaces, J. Mol. Liq., 249 (2018) 980–990.
- I.L. Animasaun, R.O. Ibraheem, B. Mahanthesh, H.A. Babatunde,
A meta-analysis on the effects of haphazard motion of
tiny/nano-sized particles on the dynamics and other physical
properties of some fluids, Chin. J. Phys., 60 (2019) 676–687.
- I.L. Animasaun, O.K. Koriko, B. Mahanthesh, A.S. Dogonchi,
A note on the significance of quartic autocatalysis chemical
reaction on the motion of air conveying dust particles,
Z. Naturforsch., A: Phys. Sci., 74 (2019b) 879–904.
- O.K. Koriko, K.S. Adegbie, I.L. Animasaun, A.F. Ijirimoye,
Comparative analysis between three-dimensional flow of
water conveying alumina nanoparticles and water conveying
alumina–iron(III) oxide nanoparticles in the presence of Lorentz
force, Arabian J. Sci. Eng., 45 (2020) 455–464.