References

  1. L. Ji, Research on the toxicology of common organic pollutants in the environment, Cult. Geogr., 16 (2017) 178.
  2. Y.-j. Liu, B.-p. Han, X.-y. Wang, Study on carbon tetrachlorideinduced groundwater contamination and its treatment technology, J. Water Resour. Prot., 2 (2005) 5–8.
  3. Y. Jiang, J. Lin, X.H. Wang, Experimental study on influence of stratum media on migration of CT, Earth Environ., 39 (2011) 592–596.
  4. G. Heron, J. Lachance, R. Baker, Removal of PCE DNAPL from tight clays using in-situ thermal desorption, Groundwater Monit. Rem., 33 (2013) 31–43.
  5. B. Kelley, S. Koenigsberg, Chemical oxidation treats soil and groundwater, Pollut. Eng., 38 (2006) 34–37.
  6. N. Değermenci, O.N. Ata, E. Yildız, Ammonia removal by air stripping in a semi-batch jet loop reactor, J. Ind. Eng. Chem., 18 (2012) 399–404.
  7. M.-H. Yuan, Y.-H. Chen, J.-Y. Tsai, C.-Y. Chang, Ammonia removal from ammonia-rich wastewater by air stripping using a rotating packed bed, Process Saf. Environ. Prot., 102 (2016) 777–785.
  8. V. Uyak, I. Koyuncu, I. Oktem, M. Cakmakci, I. Toroz, Removal of trihalomethanes from drinking water by nanofiltration membranes, J. Hazard. Mater., 152 (2008) 789–794.
  9. A. Gavaskar, L. Tatar, W. Condit, Cost and Performance Report Nanoscale Zero-Valent Iron Technologies for Source Remediation, BATTELLE 505 King Avenue, Columbus, Ohio, 2005.
  10. Santos, L.M. Freitas, Biological treatment of VOC-containing wastewaters: novel extractive membrane bioreactor vs. conventional aerated bioreactor, Process Saf. Environ. Prot., 73 (1995) 227–234.
  11. R.M. Clark, C.A. Fronk, B.W. Lykins, Removing organic contaminants from groundwater: a cost and performance evaluation, Environ. Sci. Technol., 22 (1988) 1126–1130.
  12. L. Zhibin, F. Wei, C. Zhilong, Advances in air sparging technology of saturated zone, Adv. Earth Sci., 28 (2013) 1154–1159.
  13. S.-s. Zhang, X.-k. Liu, H.-h. Liu, X.-q. Zhu, C.-c. Cao, H.-q. Liu, Y.-m. Pang, M.-l. Zhang, Treatment of carbon tetrachloride in karst underground water by spray-aeration combination process, Environ. Eng., 10 (2018) 5–8.
  14. M.L. Benner, S.M. Stanford, L.S. Lee, R.H. Mohtar, Field and numerical analysis of in-situ air sparging: a case study, J. Hazard. Mater., 72 (2000) 217–236.
  15. A. de los Santos Zamarron, Trihalomethane Reduction through Air Stripping, ETD Collection for University of Texas, El Paso, Texas, 2005.
  16. S.K. Golfinopoulos, T.D. Lekkas, A.D. Nikolaou, Comparison of methods for determination of volatile organic compounds in drinking water, Chemosphere, 45 (2001) 275–284.
  17. C. Matter-Müller, W. Gujer, W. Giger, Transfer of volatile substances from water to the atmosphere, Water Res., 15 (1981) 1271–1279.
  18. W. Zhang, Study on Air Stripping as an Emergency Treatment Technology for Removing Volatile Organic Compounds in Source Water, Tsinghua University, Beijing, 2011.
  19. X.H. Shi, Q. Zhang, F. Lu, Removal of trichloroethylene and other organic pollutants in water by aeration and stripping, Water Purif. Technol., 30 (2011) 151–154.
  20. X. Quan, F. Wang, Q. Zhao, T. Zhao, J. Xiang, Air stripping of ammonia in a water-sparged aerocyclone reactor, J. Hazard. Mater., 170 (2009) 983–988.
  21. J. Chen, Study on Removal of Chlorinated Hydrocarbons from Groundwater Source by Aeration Stripping Technology, China University of Geosciences, Beijing, 2017.
  22. M.L. Lin, Study on the Efficiency and Mechanism of Blow-Off Adsorption Technology for Water Source Burst Chlorobenzene Pollution, Harbin Institute of Technology, Harbin, 2012.
  23. S. Xue, Pilot-Scale Study on Removal of Chlorinated Hydrocarbons in Groundwater Sources for Drinking Water by Aeration Stripping Technology, Shandong Jianzhu University, Jinan, 2019.