References

  1. X. Huangfu, Y. Xu, C. Liu, Q. He, J. Ma, Ch. Ma, R. Huang, A review on the interactions between engineered nanoparticles with extracellular and intracellular polymeric substances from wastewater treatment aggregates, Chemosphere, 219 (2019) 766–783.
  2. N. Javid, M. Malakootian, Removal of bisphenol A from aqueous solutions by modified-carbonized date pits by ZnO nano-particles, Desal. Water Treat., 95 (2017) 144–151.
  3. Ch. Santhosh, V. Velmurugan, G. Jacob, S. Kwan Jeong, A.N. Grace, A. Bhatnagar, Role of nanomaterials in water treatment applications: a review, Chem. Eng. J., 306 (2016) 1116–1137.
  4. X. Qu, P.J.J. Alvarez, Q. Li, Application of nanontechnology in water and wastewater treatment, Water Res., 37 (2013) 3931–3946.
  5. G. You, P. Wang, J. Hou, Ch. Wang, Y. Xu, L. Miao, B. Lv, Y. Yang, Z. Liu, F. Zhang, Insights into the short-term effects of CeO2 nanoparticles on sludge dewatering and related mechanism, Water Res., 118 (2017) 93–103.
  6. X. Xiao, S. Liu, X. Zhang, S. Zheng, Phosphorus removal and recovery from secondary effluent in sewage treatment plant by magnetite mineral microparticles, Powder Technol., 306 (2017) 68–73.
  7. A. Masłoń, J.A. Tomaszek, J. Zamorska, M. Zdeb, A. Piech, I. Opaliński, Ł. Jurczyk, The impact of powdered keramsite on activated sludge and wastewater treatment in a sequencing batch reactor, J. Environ. Manage., 237 (2019) 305–312.
  8. J. Chen, Y.Q. Tang, Y. Li, Y. Nie, L. Hou, X.Q. Li, X.L. Wu, Impacts of different nanoparticles on functional bacterial community in activated sludge, Chemosphere, 104 (2014) 141–148.
  9. Y. Wang, P. Westerhoff, K.D. Hristovski, Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes, J. Hazard. Mater., 201–202 (2012) 16–22.
  10. S. Wang, M. Gao, Z. She, D. Zheng, Ch. Jin, L. Guo, Y. Zhao, Z. Li, X. Wang, Long-term effects of ZnO nanoparticles on nitrogen and phosphorus removal, microbial activity and microbial community of a sequencing batch reactor, Bioresour. Technol., 216 (2016) 428–436.
  11. G. Qiu, K. Wirianto, Y. Sun, Y.P. Ting, Effect of silver nanoparticles on system performance and microbial community dynamics in a sequencing batch reactor, J. Cleaner Prod., 130 (2016) 137–142.
  12. S. Simelane, J.C. Ngila, L.N. Dlamini, The fate, behavior and effect of WO3 nanoparticles on the functionality of an aerobic treatment unit, Environ. Nanotechnol. Monit. Manage., 8 (2017) 199–208.
  13. H. Zhou, G. Xu, Effect of silver nanoparticles on an integrated fixed-film activated sludge–sequencing batch reactor: performance and community structure, J. Environ. Sci., 80 (2019) 229–239.
  14. N.Q. Puay, G. Qiu, Y.P. Ting, Effect of Zinc oxide nanoparticles on biological wastewater treatment in a sequencing batch reactor, J. Cleaner Prod., 88 (2015) 139–145.
  15. P. Cervantes-Avilés, G. Cuevas-Rodríguez, Changes in nutrient removal and flocs characteristics generated by presence of ZnO nanoparticles in activated sludge process, Chemosphere, 182 (2017) 672–680.
  16. Y. Chen, Y. Su, X. Zheng, H. Chen, H. Yang, Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure, Water Res., 46 (2012) 4379–4386.
  17. A. Lazareva, A.A. Keller, Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants, ACS Sustainable Chem. Eng., 2 (2014) 1656–1665.
  18. J. Surmacz–Górska, K. Gernaey, C. Demuynck, P. Vanrolleghem, W. Verstraete, Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements, Water Res., 30 (1996) 1228–1236.
  19. E. Liwarska-Bizukojc, D. Gendaszewska, Removal of imidazolium ionic liquids by microbial associations: study of the biodegradability and kinetics, J. Biosci. Bioeng., 115 (2013) 71–75.
  20. J. Kappeler, W. Gujer, Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modeling, Water Sci. Technol., 25 (1992) 125–139.
  21. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association-American Works Water Association-Water Environment Federation, Washington DC, 2012.
  22. G.M. Rand, P.G. Wells, L.S. McCarty, Introduction to Aquatic Toxicology, G.M. Rand, Ed., Fundamentals of Aquatic Toxicology: Effects, Environmental Fate and Risk Assessment, 2nd ed., Taylor & Francis, New York, 1995, pp. 3–67.
  23. W.W. Eckenfelder, J.L. Musterman, Activated Sludge Treatment of Industrial Wastewater, Technomic Publishing Company Inc., Lancaster PA, 1995.
  24. C.P. Leslie Grady Jr., Glen T. Daigger, Nancy G. Love, Carlos D.M. Filipe, Biological Wastewater Treatment, 3rd ed., CRC Press, Boca Raton, 2011.
  25. X. Wang, M. Zhu, N. Li, S. Du, J. Yang, Y. Li, Effects of CeO2 nanoparticles on bacterial community and molecular ecological network in activated sludge system, Environ. Pollut., 238 (2018) 516–523.
  26. OECD Chemical Group, Activated Sludge, Respiration Inhibition Test, Method 209, OECD Revised Guidelines for Tests for Ready Biodegradability, OECD, Paris, 1984.
  27. D.J. Hoffman, B.A. Rattner, G.A. Burton Jr., J. Cairns Jr., Handbook of Ecotoxicology, CRC Press LLC, Boca Raton, 2002.
  28. M. Henze, P. Harremoës, J. Jansen, E. Arvin, Wastewater Treatment. Biological and Chemical Processes, Springer, Berlin, Heidelberg, 2002.
  29. E. Liwarska-Bizukojć, R. Biernacki, Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software, Bioresour. Technol., 101 (2010) 7278–7285.
  30. B. Petersen, K. Gernaey, M. Henze, P.A. Vanrolleghem, Calibration of Activated Sludge Models: A Critical Review of Experimental Designs, S.N. Agathos, W. Reineke, Eds., Biotechnology for the Environment: Wastewater Treatment and Modeling, Waste Gas Handling, Kluwer Academic Publishers, Dordrecht, 2003, pp. 101–186.