References

  1. K.S. Hashim, A. Shaw, R. Al Khaddar, M. Ortoneda Pedrola, D. Phipps, Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor, J. Environ. Manage., 189 (2017) 98–108.
  2. K.S. Hashim, N.H. Al-Saati, S.S. Alquzweeni, S.L. Zubaidi, P. Kot, L. Kraidi, A.H. Hussein, R. Alkhaddar, A. Shaw, R. Alwash, Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters, IOP Conf. Ser.: Mater. Sci. Eng., 584 (2019) 1–8, doi: 10.1088/1757-899X/584/1/012024.
  3. M. Ahmadi, F. Ghanbari, Optimizing COD removal from greywater by photoelectro-persulfate process using Box–Behnken design: assessment of effluent quality and electrical energy consumption, Environ. Sci. Pollut. Res. Int., 23 (2016) 19350–19361.
  4. A.J. Silva, M. Varesche, E. Foresti, M. Zaiat, Sulfate removal from industrial wastewater using a packed-bed anaerobic reactor, Process Biochem., 37 (2002) 927–935.
  5. X.J. Guo, Z.Y. Lu, P. Wang, H. Li, Z.Z. Huang, K.F. Lin, Y.D. Liu, Diversity and degradation mechanism of an anaerobic bacterial community treating phenolic wastewater with sulfate as an electron acceptor, Environ. Sci. Pollut. Res., 22 (2015) 16121–16132.
  6. M. Murugananthan, G.B. Raju, S. Prabhakar, Removal of sulfide, sulfate and sulfite ions by electrocoagulation, J. Hazard. Mater., 109 (2004) 37–44.
  7. S. Taita, W.P. Clarkeb, J. Kellera, D.J. Batstone, Removal of sulfate from high-strength wastewater by crystallization, Water Res., 43 (2009) 762–772.
  8. Y. Chen, Y. Wen, Q. Zhou, J. Huang, J. Vymazal, P. Kuschk, Sulfate removal and sulfur transformation in constructed wetlands: the roles of filling material and plant biomass, Water Res., 102 (2011) 572–581.
  9. WHO, Guidelines for Drinking Water Quality, World Health Organization, Geneva, 2011.
  10. M. Shams, M. Qasemi, M. Afsharnia, A.H. Mahvi, Sulphate removal from aqueous solutions by granular ferric hydroxide, Desal. Water Treat., 57 (2016) 23800–23807.
  11. L. Shan, Z. Zhang, Y. Yu, J. Ambuchi, Y. Feng, Performance of CSTR–EGSB–SBR system for treating sulfate-rich cellulosic ethanol wastewater and microbial community analysis, Environ. Sci. Pollut. Res. Int., 24 (2017) 14387–14395.
  12. F. Ntuli, T. Falayi, U. Thwanane, Removal of Sulphates from Acid Mine Drainage Using Desilicated Fly Ash Slag, In: International Conference on Waste Management and the Environment, V 202 ISSN 1743-351 (WM), 2016, doi: 10.2495/WM160341.
  13. S. Dill, J. Cowan, A. Wood, A removal of sulfate removal options from mine water, J. Int. Mine Water Assoc., 2 (2012) 329–342.
  14. Y.A. Mollah, R. Schennach, J.P. Parga, Cocke, Electrocoagulation (EC)-science and applications, J. Hazard. Mater., 84 (2001) 29–41.
  15. E.G. Filatova, Optimization of electrocoagulation technology of purifying wastewaters of ions of heavy metals, J. Water Chem. Technol., 38 (2016) 167–172.
  16. Q. Luo, T.K. Tsukamoto, K.L. Zamzow, Arsenic, selenium, and sulfate removal using an ethanol-enhanced sulfate-reducing bioreactor, Mine Water Environ., 27 (2008) 100–108.
  17. M. Zeppilli, M. Villano, F. Aulenta, S. Lampis, G. Vallini, M. Majone Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell, Environ. Sci. Pollut. Res. Int., 22 (2014) 7349–7360, doi: 10.1007/s11356–014–3158–3.
  18. I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow: a review, Environ. Sci. Pollut. Res. Int., 21 (2014) 8336–8367.
  19. T. Sahu, B. Mazumdar, P.K. Chaudhari., Treatment of wastewater by electrocoagulation: a review, Environ. Sci. Pollut. Res. Int., 21 (2014) 2397–2413.
  20. D. Syam Babu, T.S. Anantha Singh, P.V. Nidheesh, M. Suresh Kumar, Industrial wastewater treatment by electrocoagulation process, Sep. Sci. Technol., 55 (2019), doi:10.1080/01496395.2019.1671866.
  21. C.C. Jara, C.A. Martínez-Huitle, R.A. Torres-Palma, Distribution of nitrogen ions generated in the electrochemical oxidation of nitrogen containing organic compounds, Port. Electrochim. Acta, 27 (2009) 203–213.
  22. P. Dell Angel, G. Carreno, J.L. Nava, M.T. Martinez, J. Ortiz, Removal of arsenic and sulfates from an abandoned mine drainage by electrocoagulation, influence of hydrodynamic and current density, Int. J. Electrochem. Sci., 9 (2014) 710–719.
  23. D. Ghernaout, Electrocoagulation process for microalgal biotechnology -a review, Appl. Eng. Agric., 3 (2019) 85–94.
  24. J. Girczy, I. Kupich, Reduction of sulphate ions concentration in discharge waters from Zn-Pb mines, Physicochem. Probl. Miner. Process., 40 (2006) 125–134.
  25. K. Jüttnera, U. Gallab, H. Schmieder, Electrochemical approaches to environmental problems in the process industry, Electrochim. Acta, 45 (2009) 2575–2594.
  26. A.K. Sharma, A.K. Chopra, Removal of nitrate and sulphate from biologically treated municipal wastewater by electrocoagulation, Appl. Water Sci., 7 (2017) 1239–1246.
  27. E. Bazrafshan, M.H. Alipour, A.H. Mahvi, Textile wastewater treatment by application of combined chemical coagulation, electrocoagulation, and adsorption processes, Desal. Water Treat., 57 (2016) 9203–9215.
  28. E. Bazrafshan, F. Kord Mostafapour, M.M. Soori, A.H. Mahvi, Application of combined chemical coagulation and electrocoagulation process to carwash wastewater treatment, Fresenius Environ. Bull., 21 (2012) 2694–2701.
  29. A.H. Mahvi, S.J. Ebrahimi, A. Mesdaghinia, H. Gharibi, M.H. Sowlat, Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation-electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent, J. Hazard. Mater., 192 (2011) 1267–1274.
  30. N. Takeno, Atlas of Eh-pH diagrams, National Institute of Advanced Industrial Science and Technology Research Center for Deep Geological Environments, Geological Survey of Japan, No. 419, 2005.
  31. F. Shen, X. Chen, P. Gao, G. Chen, Electrochemical removal of fluoride ions from industrial wastewater, Chem. Eng. Sci., 58 (2003) 987–993.
  32. E. Bazrafshan, A.H. Mahvi, S. Nasseri, M. Shaieghi, Performance evaluation of electrocoagulation process for diazinon removal from aqueous environments by using iron electrodes, Iran. J. Environ. Health Sci. Eng., 4 (2007) 127–132.
  33. K.W. Canton, Chapter 1: Fluid Waste Disposal, In: Treatment of Wastewater by Electrocoagulation Method and the Effect of Low Cost Supporting Electrolytes, Nova Science Publishers, Inc., New York, NY, 2010, pp. 1–49.
  34. E. Bazrafshan, K. Aldin Ownagh, A.H. Mahvi, Application of electrocoagulation process using iron and aluminum electrodes for fluoride removal from aqueous environment, J. Chem., 9 (2012) 2297–2308.
  35. J. Nouri, A.H. Mahvi, E. Bazrafshan, Application of electrocoagulation process in removal of zinc and copper from aqueous solutions by aluminum electrodes, Int. J. Environ. Res., 4 (2010) 201–208.
  36. E. Bazrafshan, A.H. Mahvi, S. Nasseri, A.R. Mesdaghinia, F. Vaezi, Sh. Nazmara, Removal of cadmium from industrial effluents by electrocoagulation process using iron electrodes, Environ. Health. Sci. Eng., 3 (2006) 261–266.
  37. M. Nisha Priya, S. Esakku, K. Palanivelu, Electrochemical treatment of landfill leachate, J. Indian Chem. Eng., 47 (2005) 272–276.
  38. M. El. Amrety, M. Mossad, M. Fouad, Removal of Chlorpyrifos from aqueous solution using Electrocoagulation, Mansoura Eng. J., 43 (2018) 1–6.
  39. C. Jimenez, C. Saez, P. Canizares, M.A. Rodrigo, Optimization of a combined electrocoagulation - electroflotation reactor, Environ. Sci. Pollut. Res., 23 (2016) 9700–9711.
  40. M. Mamelkina, S. Cotillas, E. Lacasa, C. Sáez, R. Tuunila, M. Sillanpää, A. Häkkinen, M.A. Rodrigo, Removal of sulfate from mining waters by electrocoagulation, Sep. Purif. Technol., 182 (2017) 87–93.
  41. C. Ucar, M. Bilici Baskan, A. Pala, Arsenic removal from drinking water by electrocoagulation using iron electrodes, Korean J. Chem. Eng., 30 (2013) 1889–1895.