References

  1. L. Villegas, Removal of Heavy Metals from Aqueous Solution by Biofilm-Forming Bacteria Isolated from Mined-Out Soil in Mogpog, Marinduque, Philippines, 2018.
  2. M. Karnib, A. Kabbani, H. Holail, Z. Olama, Heavy metals removal using activated carbon, silica and silica activated carbon composite, Energy Procedia, 50 (2014) 113–120.
  3. G. Gyananath, D. Balhal, Removal of lead(II) from aqueous solutions by adsorption onto chitosan beads, Cellul. Chem. Technol., 46 (2012) 121.
  4. F.N. Azad, M. Ghaedi, K. Dashtian, S. Hajati, A. Goudarzi, M. Jamshidi, Enhanced simultaneous removal of malachite green and safranin O by ZnO nanorod-loaded activated carbon: modeling, optimization, and adsorption isotherms, New J. Chem., 39 (2015) 7998–8005.
  5. N. Ilankoon, Use of iron oxide magnetic nanosorbents for Cr(VI) removal from aqueous solutions: a review, J. Eng. Res. Appl., 4 (2014) 55–63.
  6. A. Asfaram, M. Ghaedi, A. Goudarzi, M. Rajabi, Response surface methodology approach for optimization of simultaneous dye and metal ion ultrasound-assisted adsorption onto Mn-doped Fe3O4-NPs loaded on AC: kinetic and isothermal studies, Dalton Trans., 44 (2015) 14707–14723.
  7. A. Navas-Acien, E. Guallar, E.K. Silbergeld, S.J. Rothenberg, Lead exposure, and cardiovascular disease—a systematic review, Environ. Health Perspect., 115 (2006) 472–482.
  8. S.A. Chaudhry, T.A. Khan, I. Ali, Adsorptive removal of Pb(II), and Zn(II) from water onto manganese oxide-coated sand: isotherm, thermodynamic and kinetic studies, Egypt. J. Basic Appl. Sci., 3 (2016) 287–300.
  9. S. Malamis, E. Katsou, M. Stylianou, K. Haralambous, M. Loizidou, Copper removal from sludge permeate with ultrafiltration membranes using zeolite, bentonite, and vermiculite as adsorbents, Water Sci. Technol., 61 (2010) 581–589.
  10. F.M. Pang, P. Kumar, T.T. Teng, A.M. Omar, K.L. Wasewar, Removal of lead, zinc, and iron by coagulation–flocculation, J. Taiwan Inst. Chem. Eng., 42 (2011) 809–815.
  11. Y. Benito, M. Ruiz, Reverse osmosis applied to metal finishing wastewater, Desalination, 142 (2002) 229–234.
  12. E. Katsou, S. Malamis, K.J. Haralambous, Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system, Chemosphere, 82 (2011) 557–564.
  13. A. Da􀉔browski, Z. Hubicki, P. Podkościelny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere, 56 (2004) 91–106.
  14. N. Adhoum, L. Monser, N. Bellakhal, J.-E. Belgaied, Treatment of electroplating wastewater containing Cu2+, Zn2+, and Cr(VI) by electrocoagulation, J. Hazard. Mater., 112 (2004) 207–213.
  15. T. Mohammadi, A. Razmi, M. Sadrzadeh, Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis, Desalination, 167 (2004) 379–385.
  16. İ. Şahin, S.Y. Keskin, C.S. Keskin, Biosorption of cadmium, manganese, nickel, lead, and zinc ions by Aspergillus tamarii, Desal. Water Treat., 51 (2013) 4524–4529.
  17. T.A. Khan, S.A. Chaudhry, I. Ali, Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution, J. Mol. Liq., 202 (2015) 165–175.
  18. T.A. Khan, S.A. Chaudhry, I. Ali, Thermodynamic and kinetic studies of As(V) removal from water by zirconium oxide-coated marine sand, Environ. Sci. Pollut. Res., 20 (2013) 5425–5440.
  19. S. Dashamiri, M. Ghaedi, K. Dashtian, M.R. Rahimi, A. Goudarzi, R. Jannesar, Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: central composite design, kinetic and isotherm study, Ultrason. Sonochem., 31 (2016) 546–557.
  20. O. Hakami, Y. Zhang, C.J. Banks, Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high-efficiency removal and recovery of Hg from water, Water Res., 46 (2012) 3913–3922.
  21. S. Singh, K. Barick, D. Bahadur, Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens, J. Hazard. Mater., 192 (2011) 1539–1547.
  22. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review, J. Hazard. Mater., 211 (2012) 317–331.
  23. X. Qu, P.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res., 47 (2013) 3931–3946.
  24. R. Taman, M. Ossman, M. Mansour, H. Farag, Metal oxide nanoparticles as an adsorbent for removal of heavy metals, J. Adv. Chem. Eng., 5 (2015) 1–8.
  25. X. Wang, Y. Guo, L. Yang, M. Han, J. Zhao, X. Cheng, Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment, J. Environ. Anal. Toxicol., 2 (2012) 1000154.
  26. C. Jing, X. Meng, E. Calvache, G. Jiang, Remediation of organic and inorganic arsenic-contaminated groundwater using a nanocrystalline TiO2-based adsorbent, Environ. Pollut., 157 (2009) 2514–2519.
  27. M. Visa, A. Duta, TiO2/fly ash novel substrate for simultaneous removal of heavy metals and surfactants, Chem. Eng. J., 223 (2013) 860–868.
  28. K. Parida, K.G. Mishra, S.K. Dash, Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: equilibrium and kinetic studies, J. Hazard. Mater., 241 (2012) 395–403.
  29. K.E. Engates, H.J. Shipley, Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion, Environ. Sci. Pollut. Res., 18 (2011) 386–395.
  30. J.-M. Herrmann, Photocatalysis fundamentals revisited to avoid several misconceptions, Appl. Catal., B, 99 (2010) 461–468.
  31. W. Zhou, L. Gai, P. Hu, J. Cui, X. Liu, D. Wang, G. Li, H. Jiang, D. Liu, H. Liu, Phase transformation of TiO2 nanobelts and TiO2(B)/anatase interface heterostructure nanobelts with enhanced photocatalytic activity, Cryst. Eng. Comm., 13 (2011) 6643–6649.
  32. M. Müllner, J. Yuan, S. Weiss, A. Walther, M. Förtsch, M. Drechsler, A.H. Müller, Water-soluble organo−silica hybrid nanotubes templated by cylindrical polymer brushes, J. Am. Chem. Soc., 132 (2010) 16587–16592.
  33. Y. Wu, J. Yu, H.-M. Liu, B.-Q. Xu, One-dimensional TiO2 nanomaterials: preparation and catalytic applications, J. Nanosci. Nanotechnol., 10 (2010) 6707–6719.
  34. M. Yu, Y.-Z. Long, B. Sun, Z. Fan, Recent advances in solar cells based on one-dimensional nanostructure arrays, Nanoscale, 4 (2012) 2783–2796.
  35. S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles, Chin. Sci. Bull., 56 (2011) 1639.
  36. V. Loryuenyong, K. Angamnuaysiri, J. Sukcharoenpong, A. Suwannasri, Sol–gel derived mesoporous titania nanoparticles: effects of calcination temperature and alcoholic solvent on the photocatalytic behavior, Ceram. Int., 38 (2012) 2233–2237.
  37. X. Feng, J. Zhai, L. Jiang, The fabrication and switchable superhydrophobicity of TiO2 nanorod films, Angew. Chem. Int. Ed., 44 (2005) 5115–5118.
  38. M. Wei, Y. Konishi, H. Zhou, H. Sugihara, H. Arakawa, A simple method to synthesize nanowires titanium dioxide from layered titanate particles, Chem. Phys. Lett., 400 (2004) 231–234.
  39. S. Mathur, V. Sivakov, H. Shen, S. Barth, C. Cavelius, A. Nilsson, P. Kuhn, Nanostructured films of iron, tin and titanium oxides by chemical vapor deposition, Thin Solid Films, 502 (2006) 88–93.
  40. J. Guo, S. Zhu, Z. Chen, Y. Li, Z. Yu, Q. Liu, J. Li, C. Feng, D. Zhang, Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst, Ultrason. Sonochem., 18 (2011) 1082–1090.
  41. Y. Zheng, K. Lv, Z. Wang, K. Deng, M. Li, Microwave-assisted rapid synthesis of anatase TiO2 nanocrystals with exposed {0 0 1} facets, J. Mol. Catal. A: Chem., 356 (2012) 137–143.
  42. A.A. Ali, I.S. Ahmed, Sol–gel auto-combustion fabrication and optical properties of cobalt orthosilicate: utilization as coloring agent in polymer and ceramic, Mater. Chem. Phys., 238 (2019) 121888.
  43. A. Ali, E. El Fadaly, I.S. Ahmed, Near-infrared reflecting blue inorganic nano-pigment based on cobalt aluminate spinel via combustion synthesis method, Dyes Pigm., 158 (2018) 451–462.
  44. A. Ali, B. Karasu, M. Allazov, T. Ilyasli, Synthesis, characterization, and study of the effect of Yb3+ on MgAl2O4 spinel structure via combustion method, J. Chem., 3 (2013) 133–138.
  45. S. Wu, Z. Weng, X. Liu, K. Yeung, P.K. Chu, Functionalized TiO2 based nanomaterials for biomedical applications, Adv. Funct. Mater., 24 (2014) 5464–5481.
  46. F. Jahantigh, M. Nazirzadeh, Synthesis and characterization of TiO2 nanoparticles with polycarbonate and investigation of its mechanical properties, Int. J. Nanosci., 16 (2017) 1750012.
  47. M. Viana, V. Soares, N. Mohallem, Synthesis and characterization of TiO2 nanoparticles, Ceram. Int., 36 (2010) 2047–2053.
  48. P. Scherrer, Göttinger Nachrichten Math, Physics, 2 (1918) 98–100.
  49. G. Li, L. Lv, H. Fan, J. Ma, Y. Li, Y. Wan, X. Zhao, Effect of the agglomeration of TiO2 nanoparticles on their photocatalytic performance in the aqueous phase, J. Colloid Interface Sci., 348 (2010) 342–347.
  50. K. Zargoosh, H. Abedini, A. Abdolmaleki, M.R. Molavian, Effective removal of heavy metal ions from industrial wastes using thiosalicylhydrazide-modified magnetic nanoparticles, Ind. Eng. Chem. Res., 52 (2013) 14944–14954.
  51. R. Balasubramanian, S. Perumal, K. Vijayaraghavan, Equilibrium isotherm studies for the multicomponent adsorption of lead, zinc, and cadmium onto Indonesian peat, Ind. Eng. Chem. Res., 48 (2009) 2093–2099.
  52. F.N. Azad, M. Ghaedi, K. Dashtian, S. Hajati, V. Pezeshkpour, Ultrasonically assisted hydrothermal synthesis of activated carbon–HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization, Ultrason. Sonochem., 31 (2016) 383–393.
  53. M. Ghaedi, H.Z. Khafri, A. Asfaram, A. Goudarzi, Response surface methodology approach for optimization of adsorption of Janus green B from aqueous solution onto ZnO/Zn(OH)2-NP-AC: kinetic and isotherm study, Spectrochim. Acta, Part A, 152 (2016) 233–240.
  54. M. Ghaedi, H. Mazaheri, S. Khodadoust, S. Hajati, M. Purkait, Application of central composite design for simultaneous removal of Methylene blue and Pb2+ ions by walnut wood activated carbon, Spectrochim. Acta, Part A, 135 (2015) 479–490.
  55. Y. Zhu, J. Hu, J. Wang, Competitive adsorption of Pb(II), Cu(II), and Zn(II) onto xanthate-modified magnetic chitosan, J. Hazard. Mater., 221 (2012) 155–161.
  56. J.V. Milojković, M.L. Mihajlović, M.D. Stojanović, Z.R. Lopičić, M.S. Petrović, T.D. Šoštarić, M.Đ. Ristić, Pb(II) removal from aqueous solution by Myriophyllum spicatum and its compost: equilibrium, kinetic and thermodynamic study, J. Chem. Technol. Biotechnol., 89 (2014) 662–670.
  57. W.W. Ngah, S. Fatinathan, Pb(II) biosorption using chitosan and chitosan derivatives beads: equilibrium, ion exchange, and mechanism studies, J. Environ. Sci., 22 (2010) 338–346.
  58. Z.-H. Huang, X. Zheng, W. Lv, M. Wang, Q.-H. Yang, F. Kang, Adsorption of lead(II) ions from aqueous solution on lowtemperature exfoliated graphene nanosheets, Langmuir, 27 (2011) 7558–7562.
  59. V. Venkatesham, G. Madhu, S. Satyanarayana, H. Preetham, Adsorption of lead on gel combustion derived nano ZnO, Procedia Eng., 51 (2013) 308–313.
  60. M. Fan, T. Boonfueng, Y. Xu, L. Axe, T.A. Tyson, Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings, J. Colloid Interface Sci., 281 (2005) 39–48.
  61. N.N. Nassar, Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents, J. Hazard. Mater., 184 (2010) 538–546.
  62. H. Cao, J. Chen, J. Zhang, H. Zhang, L. Qiao, Y. Men, Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China, J. Environ. Sci., 22 (2010) 1792–1799.