References

  1. R.G. Krauth, Controlled Percolation System and Method for Heap Leach Mining, The United States Patent 5,005,806, April 9, 1991.
  2. S.C. Bouffard, D.G. Dixon, Investigative study into the hydrodynamics of heap leaching processes, Metall. Mater. Trans. B, 32 (2001) 763–776.
  3. M.E. Schlesinger, M.J. King, K.C. Sole, W.G. Davenport, Extractive Metallurgy of Copper, 5th ed., Elsevier, The Netherlands, 2011.
  4. A. Guzmán-Guzmán, O.Y. Cáceres Hernández, R. Srivastava, J.W. Jones, Integrated Process Control to Enhance Heap Leach Performance, Proceedings of the Second International Conference on Heap Leach Solutions, Peru, June 25, 2014.
  5. S. Thomashausen, K. Hamil, Water Risks in the Mining Sector, Chile, Columbia Center on Sustainable Investment, A Joint Center of Columbia Law School, and the Earth Institute, Columbia University, New York, August 2016. Available at: http://ccsi.columbia.edu/files/2016/06/Water-Template-Chile.pdf.
  6. L. Banchik, Chile’s Thirst for Water: A Chilean City Famous for Mining in the Atacama Desert is Running Out of Water. Fast., Available at: http://latinamericanscience.org/2014/05/chilesthirst-for-water/ (accessed 20 September 2019).
  7. L.A. Cisternas, E.D. Gálvez, The use of seawater in mining, Miner. Process. Extr. Metall. Rev., Int. J., 39 (2018) 18–33.
  8. S. González, M.T. Ramírez, R. Muñoz, J. Zúñiga, The Impact of Corrosion on Mine Water Supply Systems, Water in Mining 2012, Proc. 3rd International Congress on Water Management in the Mining Industry, Santiago, June 6–8, 2012.
  9. F. Els, The World’s 10 Highest Mines, Mining.com, Glacier RIG (Resource Innovation Group) Ltd., Vancouver, BC, Canada, Dec. 16, 2015. Available at: https://www.mining.com/the-worlds-10-highest-mines/ (accessed December 2019).
  10. R.P. Genereaux, Fluid-flow design methods, Ind. Eng. Chem., 29 (1937) 385–388.
  11. M.S. Peters, K.D. Timmerhaus, Plant Design and Economics for Chemical Engineers, 2nd ed., McGraw-Hill Book Company, New York, 1968, pp. 302–308.
  12. M.S. Peters, K.D. Timmerhaus, Plant Design and Economics for Chemical Engineers, 3rd ed., McGraw-Hill Book Company, New York, 1980, pp. 377–383.
  13. M.S. Peters, K.D. Timmerhaus, Plant Design and Economics for Chemical Engineers, 4th ed., McGraw-Hill Book Company, New York, 1991.
  14. C.B. Nolte, Optimum Pipe Size Selection, 1st ed., Trans Tech Publications, 1978.
  15. W. Saeed, Chemical Engineering Projects, Design and Calculation of Chemical Engineering Projects, Pipe Size Selection, Karachi, Pakistan, April 28, 2014. Available at: https://chemicalprojects.wordpress.com/2014/04/28/pipe-size-selection/ (accessed September 15, 2019).
  16. R.W. Whitesides, Selecting the Optimum Pipe Size, PDH online Course M270 (12 PDH), Fairfax, VA, 2015. Available at: https://www.pdhonline.com/courses/m270/m270content.pdf (accessed May 20, 2019).
  17. W. Copan, National Institute of Standards and Technology (NIST), Standard Acceleration of Gravity, US Department of Congress, Gaithersburg, MD, 2019. Available at: https://physics.nist.gov/cgi-bin/cuu/Value?gn (accessed on May 20, 2019).
  18. P.R.H. Blasius, Das Aehnlichkeitsgesetz bei Reibungsvorgangen in Flüssigkeiten. Forschungsheft, 1913, pp. 131:1–41.
  19. K.T. Trinh, On the Blasius Correlation for Friction Factors, Institute of Food Nutrition and Human Health, Massey University, New Zealand, July 2010.
  20. C.M. Burt, X.S. Piao, F. Gaudi, B. Busch, N.F.N. Taufik, Electric motor efficiency under variable frequencies and loads, J. Irrig. Drain. Eng., 134 (2008).
  21. USDOE, Buying an Energy-Efficient Electric Motor, Fact Sheet, U.S. Department of Energy, 2014. Available at: https://www.energy.gov/sites/prod/files/2014/04/f15/mc-0382.pdf. (accessed November 15, 2019).
  22. American National Standard for Rotodynamic Pumps – Guideline for Effects of Liquid Viscosity on Performance, ANSI/ HI Guideline 9.6.7, Hydraulics Institute, New Jersey, 2015.
  23. Sea Temperature Organization, Monthly Taltal Water Temperature Chart, World Sea Temperatures with Ezoic Inc., Carlsbad, CA, 2019. Available at: https://www.seatemperature.org/south-america/chile/taltal-march.htm (accessed on September 20, 2019).
  24. J. Honeywell, Effect of Viscosity on Pump Performance, PetroSkills, 2006. Available at: http://www.jmcampbell.com/tip-of-the-month/2006/08/effect-of-viscosity-on-pumpperformance/ (accessed on April 20, 2019).
  25. Price List of Carbon Steel Pipes & Tubes, Seamless Pipe, Welded Pipe, Reliable Pipes & Tubes Ltd., 2019. Available at: https://www.reliablepipestubes.com/blog/price-pricelist-carbon-steelpipe-seamless-pipe-welded-pipe/ (accessed on July 30, 2019).
  26. A.A. Durand, M.J. de Villafranca Casas, A.S.G. Cornejo, D.J. Carranza, F.J.P. Román, R.G.S. Suárez, J.S. Espinoza, L.F. Villalobos, V. de la Parra, Updating the rules for pipe sizing, Chem. Eng., 117 (2010) 48–50.
  27. NOAA’s Adopt A Drifter Program, Ocean Currents Map, 2019. Available at: https://www.adp.noaa.gov/OceanCurrentsMap.aspx.
  28. C. Wisskirchen, J. Waples, F. Vásquez, Considerations for Seawater in Mining: Approaches to Evaluate ARD and Metals Leaching Potential, Water in Mining 2012, Proceedings of the 3rd International Congress on Water Management in the Mining Industry, Santiago, Chile, June 6–8, 2012.
  29. IOC, SCOR, IAPSO, The International Thermodynamic Equation of Seawater – 2010: Calculation and Use of Thermodynamic Properties, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 2010, 196p.
  30. T. Pankratz, Water Desalination Report, Global Water Intelligence, Media Analytics, Oxford, UK, 2019.
  31. A.U. Malik, I.N. Andijani, M. Mobin, S. Ahmad, Corrosion behavior of materials in RO water containing 250–350 ppm chloride, Desalination, 196 (2006) 149–159.
  32. USGS, Dissolved Oxygen Solubility Tables, U.S. Geological Survey, Aug 8, 2018. Available at: https://water.usgs.gov/software/DOTABLES/ (accessed August 10, 2019).
  33. A.H.A. Dehwah, H. Cheng, T.M. Missimer, P.-Y. Hong, Understanding microbial assembly on seawater reverse osmosis membranes to facilitate evaluation of seawater pretreatment options, Desal. Water Treat., 170 (2019) 1–10.
  34. B.O. Hasan, Effect of salt content on the corrosion rate of steel pipe in turbulently flowing solutions, Al-Nahrain Univ., Coll. Eng. J. (NUCEJ), 13 (2010) 66–73.
  35. M. Yari, An Intro to Pipeline Corrosion in Seawater, Edmonton, AL Canada, 2017. Available at: https://www.corrosionpedia.com/2/1432/corrosion-101/an-intro-to-pipeline-corrosion-inseawater (accessed on August 20, 2019).
  36. N.A.A. Alameer, The Effect of Temperature and pH on the Corrosion Rate of Carbon Steel in 1 M NaCl, Technical College, Bagdad, Iraq, 2010. Available at: https://www.iasj.net/iasj?func=fulltext&aId=29410.
  37. NACE International, Corrosion Control and Monitoring in Seawater Injection Systems, Houston, TX, NACE SPO499–2007.
  38. J. Carew, A. Al-Hashem, E.A. Al-Mohemeed, H.Y. Al-Anzi, Intelligent pigging of a seawater injection pipeline in Kuwait, Mater. Perform., 48 (2009) 44–47.
  39. Fluor® Projects, Atacama Natural Gas Pipeline, Fluor Corporation, Irving, TX, 2019. Available at: https://www.fluor.com/projects/onshore-natural-gas-pipeline-epcm (accessed December 18, 2019).
  40. X. Wang, R.E. Melchers, Long-term under-deposit pitting corrosion of carbon steel pipes, Ocean Eng., 133 (2017) 231–243.
  41. NOAA (National Oceanic and Atmospheric Administration), Science on a Sphere®, National Oceanic and Atmospheric Administration, Ocean Acidification: Surface pH, US Department of Congress, Washington, DC, 2019. Available at: https://sos.noaa.gov/datasets/ocean-acidification-surface-ph/.
  42. J.F. Waters, Measurement of Seawater pH: A Theoretical and Analytical Investigation, Doctor of Philosophy Dissertation, University of Miami, Florida, 2012.
  43. Climate Change 2013, The Physical Science Basis, Summary for Policymakers, Technical Summary and Frequently Asked Questions, Part of the Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2013, p. 28.
  44. J.C. Orr, V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437 (2005) 618–686.
  45. A.H.A. Dehwah, T.M. Missimer, Subsurface intake systems: green choice for improving feed water quality at SWRO desalination plants, Jeddah, Saudi Arabia, Water Res., 88 (2016) 218–224.
  46. D.M. Anderson, Toxic Algal Blooms and Red Tides: A Global Perspective, T. Okaichi, D.M. Anderson, T. Nemoto, Eds., Red Tides: Biology, Environmental Science and Toxicology, The Netherlands, Elsevier, 1989, pp. 11–16.
  47. G. Dvorsky, Sigma Xi SmartBrief, Stunning but Deadly, China’s Bioluminescent Algal Blooms are Getting Bigger, Gizmodo.com owned by Great Hill Partners, Boston, MA, 2019. Available at: https://gizmodo.com/stunning-but-deadly-china-s-bioluminescent-algal-bloom-1835482191 (accessed on December 6, 2019).
  48. D.M. Anderson, S.F.E. Boerlage, M.B. Dixon, Harmful Algal Blooms (HABs) and Desalination: A Guide to Impacts, Monitoring, and Management, Paris, Intergovernmental Oceanographic Commission of UNESCO, (IOC Manuals and Guides No. 78) (English) (IOC/2017/MG/78), United Nations Educational, Scientific and Cultural Organization, Paris, France, 2017, 538 p.
  49. NACE International, Internal Corrosion for Pipelines – Advanced Course Manual, Houston, TX, Sept 2009.
  50. S. González, M. Encalada, S. Daughney, T. Vece, Selection of Pipeline Corrosion Control Strategy and Impact on Economics of Water Conveyance, Water in Mining 2010, Proceedings of the 2nd International Congress on Water Management in the Mining Industry, Santiago, Chile, June 9–11, 2010.
  51. A. Ismail, N.H. Adan, Effect of oxygen concentration on corrosion rate of carbon steel in seawater, Am. J. Eng. Res. (AJER), 3 (2014) 64–67.
  52. Aegion® Coating Services, St. Louis, MO, 2019. Available at: https://www.aegion.com/about/resources/case-studies/escondidaslurry-pipe-coating.
  53. Lundin Mining, Technical Report for the Candelaria Copper Mining Complex, Atacama Region, Region III, SRK Consulting, Chile, 2018.
  54. Escondida, BHP opens Escondida Water Supply, the Largest Desalination Plant in Latin America, International Mining, 2018. Available at: https://im-mining.com/2018/04/07/bhpopens- escondida-water-supply-largest-desalination-plantlatin-america/ (accessed December 6, 2019).
  55. Mining for Zambia, A Zambia Chamber of Mines Initiative, The World’s Biggest Copper Mines, Industry Wide Website for Mining in Zambia, Zambia, Africa, 2019. Available at: https:// miningforzambia.com/worlds-biggest-copper-mines/ (accessed on May 20, 2019).
  56. Bechtel, Delivering a Reliable, Sustainable Water Supply, Bechtel Corporation, San Francisco, CA, 2019. Available at: https://www.bechtel.com/projects/escondida-water-supply/.
  57. C. Smith, T. Siewert, B. Mishra, D. Olson, A. Lassiegne, Eds., Coatings for Corrosion Protection: Offshore Oil and Gas Operation Facilities, Marine Pipeline and Ship Structure, NIST Special Publication 1035, United States Department of Transportation, Biloxi, Mississippi, April 14–16, 2004.
  58. Allied Pipeline Technologies, Collahuasi – Impulsion Water Line Coating with Sure-Liner™ HDPE, Durango, CO, 2019. Available at: https://alliedpipelinetechnologies.com/collahuasi (accessed October 12, 2019).
  59. Allied Pipeline Technologies, Peru Hudbay Constancia Tailings Pipeline, Durango, CO, 2019. Available at: https://alliedpipelinetechnologies.com/peru-hudbay (accessed December 19, 2019).
  60. Keith Industries, Fusion Bonded Epoxy (FBE), Rosharon, TX, 2019. Available at: https://keithinc.com/index.php/fusionbond-epoxy-fbe/ (accessed May 20, 2019).
  61. Specialty Polymer Coatings (SPC), Products. Epoxy, Langley, BC, Canada, 2019. Available at: http://www.spc-net.com/products/?cat=Type&val=epoxy (accessed November 15, 2019).
  62. A.U. Malik, S. Ahmad, I. Andijani, F. Al-Muaili, T.L Prakash, J. O’Hara, Corrosion Protection Evaluation of Some Organic Coatings in Water Transmission Lines, Saline Water Conversion Corporation, Technical Report, No. TR 3804/APP 95009, Al-Jubail, Kingdom of Saudi Arabia, 1999.
  63. J. Hair, Y. Idlibi, Sherwin-Williams Liquid Epoxy Coatings Offer Cost Effective Alternative, The Sherwin-Williams Company, Inc., Cleveland, OH, 2010. Available at: https://www.hartenergy. com/news/sherwin-williams-liquid-epoxy-coatings-offer-costeffective-alternative-52270.
  64. J.R. Renner, Communication, Vice President, Victaulic Company, Easton, PA, November 21, 2019.
  65. Victaulic®, Design Data for Seismic Applications of Victaulic Grooved System, 26.12, Easton, PA, 2010.
  66. USGS, 20 Largest Earthquakes in the World, U.S. Geological Survey, 2019. Available at: https://www.usgs.gov/naturalhazards/earthquake-hazards/science/20-largest-earthquakesworld? qt-science_center_objects=0#qt-science_center_objects (accessed August 10, 2019).
  67. California Department of Conservation, Sacramento, CA, 2019. Available at: https://www.conservation.ca.gov/cgs/earthquakes/northridge.
  68. W. Biery, Communication, Director – Large Diameter Systems and Hydrotransport, Victaulic Company, Easton, PA, November 21, 2019.
  69. Victaulic®, Style HP-70 Rigid High Pressure Coupling, Manual VS103.1, Easton, PA, 2017. Available at: https://www.victaulic.com/products/style-hp-70-rigid-high-pressure-coupling/ (accessed August 15, 2019).
  70. G. Trinker, Common Myths About Mechanical Pipe Joints, in the Groove; PutmanMedia®, Schaumburg, IL, 2010. Available at: https://www.plantservices.com/articles/2010/04 MechanicalPipeJoints/ (accessed on November 15, 2019).
  71. C.W. Fetter, Applied Hydrogeology, 4th ed., Prentice Hall, New Jersey, 2001.
  72. T.M. Missimer, N. Ghaffour, A.H.A. Dehwah, R. Rachman, R.G. Maliva, G.L. Amy, 2013, Subsurface intakes for seawater reverse osmosis facilities: capacity limitation, water quality improvement, and economics, Desalination, 322 (2013) 37–51.