References

  1. Z.J. Jia, B.G. Wang, S.Q. Song, Y.S. Fan, Blue energy: current technologies for sustainable power generation from water salinity gradient, Renewable Sustainable Energy Rev., 31 (2014) 91–100.
  2. R.A. Tufa, S. Pawlowski, J. Veerman, K. Bouzek, E. Fontananova, G. di Profio, S. Velizarov, J.G. Crespo, K. Nijmeijer, E. Curcio, Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage, Appl. Energy, 225 (2018) 290–331.
  3. Y. Mei, C.Y. Tang, Recent developments and future perspectives of reverse electrodialysis technology: a review, Desalination, 425 (2018) 156–174.
  4. O. Schaetzle, C.J.N. Buisman, Salinity gradient energy: current state and new trends, Engineering, 1 (2015) 164–166.
  5. B. Ortega-Delgado, F. Giacalone, A. Cipollina, M. Papapetrou, G. Kosmadakis, A. Tamburini, G. Micale, Boosting the performance of a reverse electrodialysis – multi-effect distillation heat engine by novel solutions and operating conditions, Appl. Energy, 253 (2019) 113489.
  6. F. Giacalone, C. Olkis, G. Santori, A. Cipollina, S. Brandani, G. Micale, Novel solutions for closed-loop reverse electrodialysis: thermodynamic characterisation and perspective analysis, Energy, 166 (2019) 674–689.
  7. A. Tamburini, M. Tedesco, A. Cipollina, G. Micale, M. Ciofalo, M. Papapetrou, W. Van Baak, A. Piacentino, Reverse electrodialysis heat engine for sustainable power production, Appl. Energy, 206 (2017) 1334–1353.
  8. J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse electrodialysis: a validated process model for design and optimization, Chem. Eng. J., 166 (2011) 256–268.
  9. R. Ortiz-Imedio, L. Gomez-Coma, M. Fallanza, A. Ortiz, R. Ibañez, I. Ortiz, Comparative performance of salinity gradient power-reverse electrodialysis under different operating conditions, Desalination, 457 (2019) 8–21.
  10. F. Giacalone, P. Catrini, A. Tamburini, A. Cipollina, A. Piacentino, G. Micale, Exergy analysis of reverse electrodialysis, Energy Convers. Manage., 164 (2018) 588–602.
  11. P. Palenzuela, M. Micari, B. Ortega-Delgado, F. Giacalone, G. Zaragoza, D.-C. Alarcón-Padilla, A. Cipollina, A. Tamburini, G. Micale, Performance analysis of a RED-MED salinity gradient heat engine, Energies, 11 (2018) 3385.
  12. J.G. Hong, W. Zhang, J. Luo, Y.S. Chen, Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: the effect of monovalent and multivalent ions, Appl. Energy, 110 (2013) 244–251.
  13. L. Gómez-Coma, V.M. Ortiz-Martínez, J. Carmona, L. Palacio, P. Prádanos, M. Fallanza, A. Ortiz, R. Ibañez, I. Ortiz, Modeling the influence of divalent ions on membrane resistance and electric power in reverse electrodialysis, J. Membr. Sci., 592 (2019) 117385.
  14. M.C. Hatzell, I. Ivanov, R.D. Cusick, X. Zhu, B.E. Logan, Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems, Phys. Chem. Chem. Phys., 16 (2014) 1632–1638.
  15. R.D. Cusick, Y. Kim, B.E. Logan, Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells, Science, 335 (2012) 1474–1477.
  16. F. Giacalone, F. Vassallo, F. Scargiali, A. Tamburini, A. Cipollina, G. Micale, The first operating thermolytic reverse electrodialysis heat engine, J. Membr. Sci., 595 (2020) 117522.
  17. F. Giacalone, F. Vassallo, L. Griffin, M.C. Ferrari, G. Micale, F. Scargiali, A. Tamburini, A. Cipollina, Thermolytic reverse electrodialysis heat engine: model development, integration and performance analysis, Energy Convers. Manage., 189 (2019) 1–13.
  18. X.P. Zhu, W.H. He, B.E. Logan, Influence of solution concentration and salt types on the performance of reverse electrodialysis cells, J. Membr. Sci., 494 (2015) 154–160.
  19. C. Olkis, G. Santori, S. Brandani, An adsorption reverse electrodialysis system for the generation of electricity from lowgrade heat, Appl. Energy, 231 (2018) 222–234.
  20. F. Giacalone, A. Tamburini, A. Cipollina, G. Micale, Reverse electrodialysis – multi effect distillation heat engine fed by lithium chloride solutions, Chem. Eng. Trans., 74 (2019) 787– 790, doi: 10.3303/CET1974132.
  21. M. Micari, M. Bevacqua, A. Cipollina, A. Tamburini, W. Van Baak, T. Putts, G. Micale, Effect of different aqueous solutions of pure salts and salt mixtures in reverse electrodialysis systems for closed-loop applications, J. Membr. Sci., 551 (2018) 315–325.
  22. C.Y. Zhang, Y.B. Xing, D.P. Tao, Prediction of activity and osmotic coefficients of fission product systems CsOH + CsX (X = Cl, Br, I) at 298.15 K, J. Radioanal. Nucl. Chem., 323 (2020) 773–784.
  23. D.P. Tao, A new model of thermodynamics of liquid mixtures and its application to liquid alloys, Thermochim. Acta, 363 (2000) 105–113.
  24. K.S. Pitzer, Electrolytes. From dilute solutions to fused salts, J. Am. Chem. Soc., 102 (1980) 2902–2906.
  25. Y. Marcus, Ionic volumes in solution, Biophys. Chem., 124 (2006) 200–207.
  26. A. Haghtalab, K. Peyvandi, Electrolyte-UNIQUAC-NRF model for the correlation of the mean activity coefficient of electrolyte solutions, Fluid Phase Equilib., 281 (2009) 163–171.
  27. R.A. Robinson, R.H. Stokes, Electrolyte Solutions, 2nd revised edition, Dover Publications, New York, 2002.
  28. N.Y. Yip, D. Brogioli, H.V.M. Hamelers, K. Nijmeijer, Salinity gradients for sustainable energy: primer, progress, and prospects, Environ. Sci. Technol., 50 (2016) 12072–12094.
  29. J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall, New York, 1998.
  30. R.A. Robinson, R.H. Wood, P.J. Reilly, Calculation of excess Gibbs energies and activity coefficients from isopiestic measurements on mixtures of lithium and sodium salts, J. Chem. Thermodyn., 3 (1971) 461–471.
  31. R.A. Jones, J.E. Prue, Excess Gibbs energies of aqueous mixtures of sodium chloride, potassium chloride, sodium acetate, and potassium acetate at 25°C, J. Solution Chem., 3 (1974) 585–592.
  32. R.D. Lanier, Activity coefficients of sodium chloride in aqueous three-component solutions by cation-sensitive glass electrodes1a, J. Phys. Chem., 69 (1965) 3992–3998.
  33. S. Manohar, J. Ananthaswamy, Activity coefficients of NaCl in NaCl–NaOAc–H2O at 25, 35, and 45°C, Can. J. Chem., 69 (1991) 111–115.
  34. F. Hernández-Luis, L. Fernández-Mérida, O. González-Díaz, M.A. Esteso, S.-K. Khoo, T.-K. Lim, Activity coefficients of the systems: NaBr + Na-Acetate + H2O and NaBr + Na-Propionate + H2O at 25°C. Application of Scatchard’s, Pitzer’s and Lim’s methods, Ber. Bunsenges. Phys. Chem., 97 (1993) 229–234.