References
- Z.J. Jia, B.G. Wang, S.Q. Song, Y.S. Fan, Blue energy: current
technologies for sustainable power generation from water
salinity gradient, Renewable Sustainable Energy Rev., 31 (2014)
91–100.
- R.A. Tufa, S. Pawlowski, J. Veerman, K. Bouzek, E. Fontananova,
G. di Profio, S. Velizarov, J.G. Crespo, K. Nijmeijer, E. Curcio, Progress
and prospects in reverse electrodialysis for salinity gradient
energy conversion and storage, Appl. Energy, 225 (2018) 290–331.
- Y. Mei, C.Y. Tang, Recent developments and future perspectives
of reverse electrodialysis technology: a review, Desalination,
425 (2018) 156–174.
- O. Schaetzle, C.J.N. Buisman, Salinity gradient energy: current
state and new trends, Engineering, 1 (2015) 164–166.
- B. Ortega-Delgado, F. Giacalone, A. Cipollina, M. Papapetrou,
G. Kosmadakis, A. Tamburini, G. Micale, Boosting the performance
of a reverse electrodialysis – multi-effect distillation
heat engine by novel solutions and operating conditions,
Appl. Energy, 253 (2019) 113489.
- F. Giacalone, C. Olkis, G. Santori, A. Cipollina, S. Brandani,
G. Micale, Novel solutions for closed-loop reverse electrodialysis:
thermodynamic characterisation and perspective
analysis, Energy, 166 (2019) 674–689.
- A. Tamburini, M. Tedesco, A. Cipollina, G. Micale, M. Ciofalo,
M. Papapetrou, W. Van Baak, A. Piacentino, Reverse electrodialysis
heat engine for sustainable power production, Appl.
Energy, 206 (2017) 1334–1353.
- J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse
electrodialysis: a validated process model for design and
optimization, Chem. Eng. J., 166 (2011) 256–268.
- R. Ortiz-Imedio, L. Gomez-Coma, M. Fallanza, A. Ortiz,
R. Ibañez, I. Ortiz, Comparative performance of salinity
gradient power-reverse electrodialysis under different
operating conditions, Desalination, 457 (2019) 8–21.
- F. Giacalone, P. Catrini, A. Tamburini, A. Cipollina, A. Piacentino,
G. Micale, Exergy analysis of reverse electrodialysis,
Energy Convers. Manage., 164 (2018) 588–602.
- P. Palenzuela, M. Micari, B. Ortega-Delgado, F. Giacalone,
G. Zaragoza, D.-C. Alarcón-Padilla, A. Cipollina, A. Tamburini,
G. Micale, Performance analysis of a RED-MED salinity gradient
heat engine, Energies, 11 (2018) 3385.
- J.G. Hong, W. Zhang, J. Luo, Y.S. Chen, Modeling of power
generation from the mixing of simulated saline and freshwater
with a reverse electrodialysis system: the effect of monovalent
and multivalent ions, Appl. Energy, 110 (2013) 244–251.
- L. Gómez-Coma, V.M. Ortiz-Martínez, J. Carmona, L. Palacio,
P. Prádanos, M. Fallanza, A. Ortiz, R. Ibañez, I. Ortiz, Modeling
the influence of divalent ions on membrane resistance and
electric power in reverse electrodialysis, J. Membr. Sci.,
592 (2019) 117385.
- M.C. Hatzell, I. Ivanov, R.D. Cusick, X. Zhu, B.E. Logan,
Comparison of hydrogen production and electrical power
generation for energy capture in closed-loop ammonium
bicarbonate reverse electrodialysis systems, Phys. Chem. Chem.
Phys., 16 (2014) 1632–1638.
- R.D. Cusick, Y. Kim, B.E. Logan, Energy capture from
thermolytic solutions in microbial reverse-electrodialysis cells,
Science, 335 (2012) 1474–1477.
- F. Giacalone, F. Vassallo, F. Scargiali, A. Tamburini, A. Cipollina,
G. Micale, The first operating thermolytic reverse electrodialysis
heat engine, J. Membr. Sci., 595 (2020) 117522.
- F. Giacalone, F. Vassallo, L. Griffin, M.C. Ferrari, G. Micale,
F. Scargiali, A. Tamburini, A. Cipollina, Thermolytic reverse
electrodialysis heat engine: model development, integration
and performance analysis, Energy Convers. Manage., 189 (2019)
1–13.
- X.P. Zhu, W.H. He, B.E. Logan, Influence of solution
concentration and salt types on the performance of reverse
electrodialysis cells, J. Membr. Sci., 494 (2015) 154–160.
- C. Olkis, G. Santori, S. Brandani, An adsorption reverse
electrodialysis system for the generation of electricity from lowgrade
heat, Appl. Energy, 231 (2018) 222–234.
- F. Giacalone, A. Tamburini, A. Cipollina, G. Micale, Reverse
electrodialysis – multi effect distillation heat engine fed by
lithium chloride solutions, Chem. Eng. Trans., 74 (2019) 787–
790, doi: 10.3303/CET1974132.
- M. Micari, M. Bevacqua, A. Cipollina, A. Tamburini, W. Van
Baak, T. Putts, G. Micale, Effect of different aqueous solutions
of pure salts and salt mixtures in reverse electrodialysis
systems for closed-loop applications, J. Membr. Sci., 551 (2018)
315–325.
- C.Y. Zhang, Y.B. Xing, D.P. Tao, Prediction of activity and
osmotic coefficients of fission product systems CsOH + CsX
(X = Cl, Br, I) at 298.15 K, J. Radioanal. Nucl. Chem., 323 (2020)
773–784.
- D.P. Tao, A new model of thermodynamics of liquid mixtures
and its application to liquid alloys, Thermochim. Acta,
363 (2000) 105–113.
- K.S. Pitzer, Electrolytes. From dilute solutions to fused salts,
J. Am. Chem. Soc., 102 (1980) 2902–2906.
- Y. Marcus, Ionic volumes in solution, Biophys. Chem.,
124 (2006) 200–207.
- A. Haghtalab, K. Peyvandi, Electrolyte-UNIQUAC-NRF model
for the correlation of the mean activity coefficient of electrolyte
solutions, Fluid Phase Equilib., 281 (2009) 163–171.
- R.A. Robinson, R.H. Stokes, Electrolyte Solutions, 2nd revised
edition, Dover Publications, New York, 2002.
- N.Y. Yip, D. Brogioli, H.V.M. Hamelers, K. Nijmeijer, Salinity
gradients for sustainable energy: primer, progress, and
prospects, Environ. Sci. Technol., 50 (2016) 12072–12094.
- J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo, Molecular
Thermodynamics of Fluid-Phase Equilibria, Prentice-Hall,
New York, 1998.
- R.A. Robinson, R.H. Wood, P.J. Reilly, Calculation of excess
Gibbs energies and activity coefficients from isopiestic
measurements on mixtures of lithium and sodium salts,
J. Chem. Thermodyn., 3 (1971) 461–471.
- R.A. Jones, J.E. Prue, Excess Gibbs energies of aqueous mixtures
of sodium chloride, potassium chloride, sodium acetate,
and potassium acetate at 25°C, J. Solution Chem., 3 (1974)
585–592.
- R.D. Lanier, Activity coefficients of sodium chloride in
aqueous three-component solutions by cation-sensitive glass
electrodes1a, J. Phys. Chem., 69 (1965) 3992–3998.
- S. Manohar, J. Ananthaswamy, Activity coefficients of NaCl in
NaCl–NaOAc–H2O at 25, 35, and 45°C, Can. J. Chem., 69 (1991)
111–115.
- F. Hernández-Luis, L. Fernández-Mérida, O. González-Díaz,
M.A. Esteso, S.-K. Khoo, T.-K. Lim, Activity coefficients of the
systems: NaBr + Na-Acetate + H2O and NaBr + Na-Propionate
+ H2O at 25°C. Application of Scatchard’s, Pitzer’s and Lim’s
methods, Ber. Bunsenges. Phys. Chem., 97 (1993) 229–234.