References

  1. L. Li, M. Fan, R.C. Brown, J. Van Leeuwen, J. Wang, W. Wang, Y. Song, P. Zhang, Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review, Crit. Rev. Environ. Sci. Technol., 36 (2006) 405–431.
  2. X.-q. Li, D.W. Elliott, W.-x. Zhang, Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects, Crit. Rev. Solid State Mater. Sci., 31 (2006) 111–122.
  3. C.-B. Wang, W.-x. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol., 31 (1997) 2154–2156.
  4. W.-x. Zhang, Nanoscale iron particles for environmental remediation: an overview, J. Nanopart. Res., 5 (2003) 323–332.
  5. J. Cao, D. Elliott, W.-x. Zhang, Perchlorate reduction by nanoscale iron particles, J. Nanopart. Res., 7 (2005) 499–506.
  6. W. Elliott Daniel, H.-L. Lien, W.-X. Zhang, Degradation of lindane by zero-valent iron nanoparticles, J. Environ. Eng., 135 (2009) 317–324.
  7. S.R. Kanel, B. Manning, L. Charlet, H. Choi, Removal of arsenic(III) from groundwater by nanoscale zero-valent iron, Environ. Sci. Technol., 39 (2005) 1291–1298.
  8. H.-L. Lien, W.-X. Zhang, Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination, Appl. Catal., B, 77 (2007) 110–116.
  9. G.V. Lowry, K.M. Johnson, Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution, Environ. Sci. Technol., 38 (2004) 5208–5216.
  10. S.M. Ponder, J.G. Darab, T.E. Mallouk, Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zerovalent iron, Environ. Sci. Technol., 34 (2000) 2564–2569.
  11. H. Song, E.R. Carraway, Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions, Environ. Sci. Technol., 39 (2005) 6237–6245.
  12. C. Su, R.W. Puls, Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate, Environ. Sci. Technol., 38 (2004) 2715–2720.
  13. Z. Xiong, D. Zhao, G. Pan, Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles, Water Res., 41 (2007) 3497–3505.
  14. R. National Center for Environmental, U.S. EPA Workshop on Nanotechnology for Site Remediation, U.S. Department of Commerce, Washington, DC, October 20–21, 2005, U.S. Environmental Protection Agency, Washington, DC, 2005.
  15. N.C. Mueller, J. Braun, J. Bruns, M. Černík, P. Rissing, D. Rickerby, B. Nowack, Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe, Environ. Sci. Pollut. Res., 19 (2012) 550–558.
  16. Y. Xi, M. Mallavarapu, R. Naidu, Reduction and adsorption of Pb2+ in aqueous solution by nano-zero-valent iron—a SEM, TEM and XPS study, Mater. Res. Bull., 45 (2010) 1361–1367.
  17. Y. Zhang, Y. Su, X. Zhou, C. Dai, A.A. Keller, A new insight on the core–shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration, J. Hazard. Mater., 263 (2013) 685–693.
  18. H. Needleman, Lead poisoning, Annu. Rev. Med., 55 (2004) 209–222.
  19. N. Chanthapon, S. Sarkar, P. Kidkhunthod, S. Padungthon, Lead removal by a reusable gel cation exchange resin containing nano-scale zero valent iron, Chem. Eng. J., 331 (2018) 545–555.
  20. N. Rahman, U. Haseen, M. Rashid, Synthesis and characterization of polyacrylamide zirconium(IV) iodate ion-exchanger: its application for selective removal of lead(II) from wastewater, Arabian J. Chem., 10 (2017) S1765–S1773.
  21. X.-q. Li, W.-x. Zhang, Iron nanoparticles: the core−shell structure and unique properties for Ni(II) sequestration, Langmuir, 22 (2006) 4638–4642.
  22. M.A.V. Ramos, W. Yan, X.-q. Li, B.E. Koel, W.-x. Zhang, Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core−shell structure, J. Phys. Chem. C, 113 (2009) 14591–14594.
  23. O. Çelebi, Ç. Üzüm, T. Shahwan, H.N. Erten, A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron, J. Hazard. Mater., 148 (2007) 761–767.
  24. Ç. Üzüm, T. Shahwan, A.E. Eroğlu, K.R. Hallam, T.B. Scott, I. Lieberwirth, Synthesis and characterization of kaolinitesupported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions, Appl. Clay Sci., 43 (2009) 172–181.
  25. W. Yan, A.A. Herzing, C.J. Kiely, W.-x. Zhang, Nanoscale zerovalent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water, J. Contam. Hydrol., 118 (2010) 96–104.
  26. H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles, J. Hazard. Mater., 186 (2011) 458–465.
  27. S.A. Kim, S. Kamala-Kannan, K.-J. Lee, Y.-J. Park, P.J. Shea, W.-H. Lee, H.-M. Kim, B.-T. Oh, Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite, Chem. Eng. J., 217 (2013) 54–60.
  28. Y.-P. Sun, X.-q. Li, J. Cao, W.-x. Zhang, H.P. Wang, Characterization of zero-valent iron nanoparticles, Adv. Colloid Interface Sci., 120 (2006) 47–56.
  29. Y.-P. Sun, X.-Q. Li, W.-X. Zhang, H.P. Wang, A method for the preparation of stable dispersion of zero-valent iron nanoparticles, Colloids Surf., A, 308 (2007) 60–66.
  30. J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael, Scanning electron microscopy and X-ray microanalysis, Scanning, 27 (2003) 215–216.
  31. X.-q. Li, W.-x. Zhang, Sequestration of metal cations with zerovalent iron nanoparticles–a study with high resolution X-ray photoelectron spectroscopy (HR-XPS), J. Phys. Chem. C, 111 (2007) 6939–6946.
  32. S. Azizian, Kinetic models of sorption: a theoretical analysis, J. Colloid Interface Sci., 276 (2004) 47–52.
  33. Y.-S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 136 (2006) 681–689.
  34. D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coir pith carbon, Bioresour. Technol., 98 (2007) 14–21.
  35. S.I.H. Taqvi, S.M. Hasany, M.I. Bhanger, Sorption profile of Cd(II) ions onto beach sand from aqueous solutions, J. Hazard. Mater., 141 (2007) 37–44.
  36. F.-C. Wu, R.-L. Tseng, R.-S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153 (2009) 1–8.
  37. M. Barkat, D. Nibou, S. Chegrouche, A. Mellah, Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions, Chem. Eng. Process. Process Intensif., 48 (2009) 38–47.
  38. P. Chingombe, B. Saha, R.J. Wakeman, Sorption of atrazine on conventional and surface modified activated carbons, J. Colloid Interface Sci., 302 (2006) 408–416.
  39. J.-Q. Jiang, C. Cooper, S. Ouki, Comparison of modified montmorillonite adsorbents: part I: preparation, characterization and phenol adsorption, Chemosphere, 47 (2002) 711–716.
  40. I. Mironyuk, T. Tatarchuk, M. Naushad, H. Vasylyeva, I. Mykytyn, Highly efficient adsorption of strontium ions by carbonated mesoporous TiO2, J. Mol. Liq., 285 (2019) 742–753.
  41. W. Yan, R. Vasic, A.I. Frenkel, B.E. Koel, Intraparticle reduction of arsenite (As(III)) by nanoscale zerovalent iron (nZVI) investigated with in situ X-ray absorption spectroscopy, Environ. Sci. Technol., 46 (2012) 7018–7026.
  42. M. Naushad, Z.A. Alothman, M.R. Awual, M.M. Alam, G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger, Ionics, 21 (2015) 2237–2245.
  43. M. Naushad, Surfactant assisted nano-composite cation exchanger: development, characterization and applications for the removal of toxic Pb2+ from aqueous medium, Chem. Eng. J., 235 (2014) 100–108.
  44. M. Ghasemi, M. Ghasemi, N. Ghasemi, Y. Khosravi-Fard, Adsorption of Pb(II) from aqueous solution using new adsorbents prepared from agricultural waste: adsorption isotherm and kinetic studies, J. Ind. Eng. Chem., 20 (2014) 2193–2199.
  45. X. Zhang, S. Lin, Z. Chen, M. Megharaj, R. Naidu, Kaolinitesupported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism, Water Res., 45 (2011) 3481–3488.
  46. X. Zhang, S. Lin, X.-Q. Lu, Z.-l. Chen, Removal of Pb(II) from water using synthesized kaolin supported nanoscale zerovalent iron, Chem. Eng. J., 163 (2010) 243–248.
  47. M. Arshadi, M. Soleymanzadeh, J.W. Salvacion, F. SalimiVahid, Nanoscale zero-valent iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: kinetics, thermodynamic and mechanism, J. Colloid Interface Sci., 426 (2014) 241–251.