References
- X.H. Lu, G.M. Wang, T. Zhai, M.H. Yu, J.Y. Gan, Y.X. Tong, Y. Li,
Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano
Lett., 12 (2012) 1690–1696.
- J.H. Kim, D. Bhattacharjya, J.-S. Yu, Synthesis of hollow TiO2@N-doped
carbon with enhanced electrochemical capacitance by an
in situ hydrothermal process using hexamethylenetetramine,
J. Mater. Chem. A, 2 (2014) 11472–11479.
- X.Y. Shen, M. Chen, X.H. Hong, W.D. Wang, Z.K. Qiao, J. Chen,
S.J. Fan, J.X. Yu, C.J. Tang, Synthesis and anodic performance of
TiO2-carbonized PAN electrode for lithium ion batteries, Chem.
Phys., 530 (2020) 110639.
- S.A.M. Chachuli, M.N. Hamidon, M. Ertugrul, Md.S. Mamat,
H. Jaafar, N.H. Shamsudin, TiO2/B2O3 thick film gas sensor
for monitoring carbon monoxide at different operating
temperatures, J. Phys. Conf. Ser., 1432 (2020) 012040.
- I. Heng, C.W. Lai, J.C. Juan, A. Numan, J. Iqbal, E.Y.L. Teo,
Low-temperature synthesis of TiO2 nanocrystals for high
performance electrochemical supercapacitors, Ceram. Int.,
45 (2019) 4990–5000.
- Q. Shen, C.Y. Cao, R.K. Huang, L. Zhu, X. Zhou, Q.H. Zhang,
L. Gu, W.G. Song, Single chromium atoms supported on
titanium dioxide nanoparticles for synergic catalytic methane
conversion under mild conditions, Angew. Chem. Int. Ed.,
132 (2020) 1232–1235.
- A.M. Aljeboree, A.F. Alkaim, Removal of antibiotic tetracycline
(TCs) from aqueous solutions by using titanium dioxide (TiO2)
nanoparticles as an alternative material, J. Phys. Conf. Ser.,
1294 (2019) 052059.
- L.E. Oi, M.-Y. Choo, H.V. Lee, H.C. Ong, S.B.A. Hamid, J.C. Juan,
Recent advances of titanium dioxide (TiO2) for green organic
synthesis, RSC Adv., 6 (2016) 108741–108754.
- D. Dambournet, I. Belharouak, K. Amine, Tailored preparation
methods of TiO2 anatase, rutile, brookite: mechanism of
formation and electrochemical properties, Chem. Mater.,
22 (2009) 1173–1179.
- G.S.H. Thien, F.S. Omar, N.I.S.A. Blya, W.S. Chiu, H.N. Lim,
R. Yousefi, F.-J. Sheini, N.M. Huang, Improved synthesis of
reduced graphene oxide-titanium dioxide composite with
highly exposed {001} facets and its photoelectrochemical
response, Int. J. Photoenergy, 2014 (2014) 1–9.
- H.Z. Zhang, J.F. Banfield, Understanding polymorphic phase
transformation behavior during growth of nanocrystalline
aggregates: insights from TiO2, J. Phys. Chem. B, 104 (2000)
3481–3487.
- M. Rajca, M. Bodzek, Kinetics of fulvic and humic acids
photodegradation in water solutions, Sep. Purif. Technol.,
120 (2013) 35–42.
- K. Nakata, A. Fujishima, TiO2 photocatalysis: design and
applications, J. Photochem. Photobiol., C, 13 (2012) 169–189.
- W.-C. Hung, S.-H. Fu, J.-J. Tseng, H. Chu, T.-H. Ko, Study on
photocatalytic degradation of gaseous dichloromethane using
pure and iron ion-doped TiO2 prepared by the sol–gel method,
Chemosphere, 66 (2007) 2142–2151.
- T. Raguram, K.S. Rajni, Effects of varying the soaking duration
of Eosin Blue sensitized TiO2 photoanodes for dye-sensitized
solar cells, Optik, 204 (2020) 164169.
- S. Bang, M. Patel, L. Lippincott, X. Meng, Removal of arsenic
from groundwater by granular titanium dioxide adsorbent,
Chemosphere, 60 (2005) 389–397.
- M.E. Pena, G.P. Korfiatis, M. Patel, L. Lippincott, X.G. Meng,
Adsorption of As(V) and As(III) by nanocrystalline titanium
dioxide, Water Res., 39 (2005) 2327–2337.
- D. Nabi, I. Aslam, I.A. Qazi, Evaluation of the adsorption
potential of titanium dioxide nanoparticles for arsenic removal,
J. Environ. Sci., 21 (2009) 402–408.
- P.L.A. Guillaume, A.M. Chelaru, M. Visa, O. Lassiné, “Titanium
oxide-clay” as adsorbent and photocatalysts for wastewater
treatment, J. Membr. Sci. Technol., 8 (2018) 2.
- W.L. Zhang, Y. Wu, J. Wang, J. Liu, H.F. Lu, S.J. Zhai, Q.H. Zhong,
S.Y. Liu, W.Y. Zhong, C.L. Huang, X.X. Yu, W.H. Zhang,
Y.H. Chen, Adsorption of thallium(I) on rutile nano-titanium
dioxide and environmental implications, PeerJ, 7 (2019) e6820.
- L. Zhang, N. Liu, L. Yang, Q. Lin, Sorption behavior of
nano-TiO2 for the removal of selenium ions from aqueous
solution, J. Hazard. Mater., 170 (2009) 1197–1203.
- L. Svecova, M. Dossot, S. Cremel, M.-O. Simonnot, M. Sardin,
B. Humbert, C. Den Auwer, L.J. Michot, Sorption of selenium
oxyanions on TiO2 (rutile) studied by batch or column
experiments and spectroscopic methods, J. Hazard. Mater.,
189 (2011) 764–772.
- A.B. Kök, M.D. Mungan, S. Doğanlar, A. Frary, Transcriptomic
analysis of selenium accumulation in Puccinellia distans (Jacq.)
Parl., a boron hyperaccumulator, Chemosphere, 245 (2020)
125665.
- M. Rovira, J. Giménez, M. Martínez, X. Martínez-Lladó,
J. de Pablo, V. Martí, L. Duro, Sorption of selenium(IV) and
selenium(VI) onto natural iron oxides: goethite and hematite,
J. Hazard. Mater., 150 (2008) 279–284.
- M.A. Mohammed, A.M. Rheima, S.H. Jaber, S.A. Hameed,
The removal of zinc ions from their aqueous solutions by
Cr2O3 nanoparticles synthesized via the UV-irradiation
method, Egypt. J. Chem., 63 (2020) 5–6.
- A.M. Rheima, M.A. Mohammed, S.H. Jaber, S.A. Hameed,
Synthesis of silver nanoparticles using the UV-irradiation
technique in an antibacterial application, J. Southwest Jiaotong
Univ., 54 (2019), https://doi.org/10.35741/issn.0258-2724.54.5.34.
- A.M. Rheima, M.A. Mohammed, S.H. Jaber, M.H. Hasan,
Inhibition effect of silver-calcium nanocomposite on alanine
transaminase enzyme activity in human serum of Iraqi patients
with chronic liver disease, Drug Invention Today, 12 (2019)
2818–2821.
- L.S. Chougala, M.S. Yatnatti, R.K. Linganagoudar, R.R. Kamble,
J.S. Kadadevarmath, A simple approach on synthesis of TiO2
nanoparticles and its application in dye sensitized solar cells,
J. Nano Electron. Phys., 9 (2017) 1–6.
- S.S. Al-Taweel, H.R. Saud, New route for synthesis of pure
anatase TiO2 nanoparticles via ultrasound-assisted sol–gel
method, J. Chem. Pharm. Res., 8 (2016) 620–626.
- D.H. Hussain, A.M. Rheima, S.H. Jaber, M.M. Kadhim,
Cadmium ions pollution treatments in aqueous solution
using electrochemically synthesized gamma aluminum oxide
nanoparticles with DFT study, Egypt. J. Chem., 63 (2020) 2–3.
- A.M. Rheima, D.H. Hussain, M.M.A. Almijbilee, Graphene-silver
nanocomposite: synthesis, and adsorption study of cibacron
blue dye from their aqueous solution, J. Southwest Jiaotong
Univ., 54 (2019), https://doi.org/10.35741/issn.0258-2724.54.6.14.
- G. Crini, Kinetic and equilibrium studies on the removal of
cationic dyes from aqueous solution by adsorption onto a
cyclodextrin polymer, Dyes Pigm., 77 (2008) 415–426.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- Y. Liu, P. Liang, L. Guo, Nanometer titanium dioxide
immobilized on silica gel as sorbent for preconcentration of
metal ions prior to their determination by inductively coupled
plasma atomic emission spectrometry, Talanta, 68 (2005) 25–30.
- S.B. Wang, Y. Boyjoo, A. Choueib, Z.H. Zhu, Removal of dyes
from aqueous solution using fly ash and red mud, Water Res.,
39 (2005) 129–138.
- A. Muhammad, A.U.H.A. Shah, S. Bilal, Comparative study
of the adsorption of acid blue 40 on polyaniline, magnetic
oxide and their composites: synthesis, characterization and
application, Materials, 12 (2019) 2854.
- A.M. Farhan, N.M. Salem, A.H. Al-Dujaili, A.M. Awwad,
Biosorption studies of Cr(VI) ions from electroplating
wastewater by walnut shell powder, Am. J. Environ. Eng.,
2 (2012) 188–195.
- M. Matouq, N. Jildeh, M. Qtaishat, M. Hindiyeh, M.Q. Al
Syouf, The adsorption kinetics and modeling for heavy metals
removal from wastewater by Moringa pods, J. Environ. Chem.
Eng., 3 (2015) 775–784.