References

  1. X.H. Lu, G.M. Wang, T. Zhai, M.H. Yu, J.Y. Gan, Y.X. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano Lett., 12 (2012) 1690–1696.
  2. J.H. Kim, D. Bhattacharjya, J.-S. Yu, Synthesis of hollow TiO2@N-doped carbon with enhanced electrochemical capacitance by an in situ hydrothermal process using hexamethylenetetramine, J. Mater. Chem. A, 2 (2014) 11472–11479.
  3. X.Y. Shen, M. Chen, X.H. Hong, W.D. Wang, Z.K. Qiao, J. Chen, S.J. Fan, J.X. Yu, C.J. Tang, Synthesis and anodic performance of TiO2-carbonized PAN electrode for lithium ion batteries, Chem. Phys., 530 (2020) 110639.
  4. S.A.M. Chachuli, M.N. Hamidon, M. Ertugrul, Md.S. Mamat, H. Jaafar, N.H. Shamsudin, TiO2/B2O3 thick film gas sensor for monitoring carbon monoxide at different operating temperatures, J. Phys. Conf. Ser., 1432 (2020) 012040.
  5. I. Heng, C.W. Lai, J.C. Juan, A. Numan, J. Iqbal, E.Y.L. Teo, Low-temperature synthesis of TiO2 nanocrystals for high performance electrochemical supercapacitors, Ceram. Int., 45 (2019) 4990–5000.
  6. Q. Shen, C.Y. Cao, R.K. Huang, L. Zhu, X. Zhou, Q.H. Zhang, L. Gu, W.G. Song, Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild conditions, Angew. Chem. Int. Ed., 132 (2020) 1232–1235.
  7. A.M. Aljeboree, A.F. Alkaim, Removal of antibiotic tetracycline (TCs) from aqueous solutions by using titanium dioxide (TiO2) nanoparticles as an alternative material, J. Phys. Conf. Ser., 1294 (2019) 052059.
  8. L.E. Oi, M.-Y. Choo, H.V. Lee, H.C. Ong, S.B.A. Hamid, J.C. Juan, Recent advances of titanium dioxide (TiO2) for green organic synthesis, RSC Adv., 6 (2016) 108741–108754.
  9. D. Dambournet, I. Belharouak, K. Amine, Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties, Chem. Mater., 22 (2009) 1173–1179.
  10. G.S.H. Thien, F.S. Omar, N.I.S.A. Blya, W.S. Chiu, H.N. Lim, R. Yousefi, F.-J. Sheini, N.M. Huang, Improved synthesis of reduced graphene oxide-titanium dioxide composite with highly exposed {001} facets and its photoelectrochemical response, Int. J. Photoenergy, 2014 (2014) 1–9.
  11. H.Z. Zhang, J.F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2, J. Phys. Chem. B, 104 (2000) 3481–3487.
  12. M. Rajca, M. Bodzek, Kinetics of fulvic and humic acids photodegradation in water solutions, Sep. Purif. Technol., 120 (2013) 35–42.
  13. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol., C, 13 (2012) 169–189.
  14. W.-C. Hung, S.-H. Fu, J.-J. Tseng, H. Chu, T.-H. Ko, Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method, Chemosphere, 66 (2007) 2142–2151.
  15. T. Raguram, K.S. Rajni, Effects of varying the soaking duration of Eosin Blue sensitized TiO2 photoanodes for dye-sensitized solar cells, Optik, 204 (2020) 164169.
  16. S. Bang, M. Patel, L. Lippincott, X. Meng, Removal of arsenic from groundwater by granular titanium dioxide adsorbent, Chemosphere, 60 (2005) 389–397.
  17. M.E. Pena, G.P. Korfiatis, M. Patel, L. Lippincott, X.G. Meng, Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide, Water Res., 39 (2005) 2327–2337.
  18. D. Nabi, I. Aslam, I.A. Qazi, Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal, J. Environ. Sci., 21 (2009) 402–408.
  19. P.L.A. Guillaume, A.M. Chelaru, M. Visa, O. Lassiné, “Titanium oxide-clay” as adsorbent and photocatalysts for wastewater treatment, J. Membr. Sci. Technol., 8 (2018) 2.
  20. W.L. Zhang, Y. Wu, J. Wang, J. Liu, H.F. Lu, S.J. Zhai, Q.H. Zhong, S.Y. Liu, W.Y. Zhong, C.L. Huang, X.X. Yu, W.H. Zhang, Y.H. Chen, Adsorption of thallium(I) on rutile nano-titanium dioxide and environmental implications, PeerJ, 7 (2019) e6820.
  21. L. Zhang, N. Liu, L. Yang, Q. Lin, Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution, J. Hazard. Mater., 170 (2009) 1197–1203.
  22. L. Svecova, M. Dossot, S. Cremel, M.-O. Simonnot, M. Sardin, B. Humbert, C. Den Auwer, L.J. Michot, Sorption of selenium oxyanions on TiO2 (rutile) studied by batch or column experiments and spectroscopic methods, J. Hazard. Mater., 189 (2011) 764–772.
  23. A.B. Kök, M.D. Mungan, S. Doğanlar, A. Frary, Transcriptomic analysis of selenium accumulation in Puccinellia distans (Jacq.) Parl., a boron hyperaccumulator, Chemosphere, 245 (2020) 125665.
  24. M. Rovira, J. Giménez, M. Martínez, X. Martínez-Lladó, J. de Pablo, V. Martí, L. Duro, Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite, J. Hazard. Mater., 150 (2008) 279–284.
  25. M.A. Mohammed, A.M. Rheima, S.H. Jaber, S.A. Hameed, The removal of zinc ions from their aqueous solutions by Cr2O3 nanoparticles synthesized via the UV-irradiation method, Egypt. J. Chem., 63 (2020) 5–6.
  26. A.M. Rheima, M.A. Mohammed, S.H. Jaber, S.A. Hameed, Synthesis of silver nanoparticles using the UV-irradiation technique in an antibacterial application, J. Southwest Jiaotong Univ., 54 (2019), https://doi.org/10.35741/issn.0258-2724.54.5.34.
  27. A.M. Rheima, M.A. Mohammed, S.H. Jaber, M.H. Hasan, Inhibition effect of silver-calcium nanocomposite on alanine transaminase enzyme activity in human serum of Iraqi patients with chronic liver disease, Drug Invention Today, 12 (2019) 2818–2821.
  28. L.S. Chougala, M.S. Yatnatti, R.K. Linganagoudar, R.R. Kamble, J.S. Kadadevarmath, A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells, J. Nano Electron. Phys., 9 (2017) 1–6.
  29. S.S. Al-Taweel, H.R. Saud, New route for synthesis of pure anatase TiO2 nanoparticles via ultrasound-assisted sol–gel method, J. Chem. Pharm. Res., 8 (2016) 620–626.
  30. D.H. Hussain, A.M. Rheima, S.H. Jaber, M.M. Kadhim, Cadmium ions pollution treatments in aqueous solution using electrochemically synthesized gamma aluminum oxide nanoparticles with DFT study, Egypt. J. Chem., 63 (2020) 2–3.
  31. A.M. Rheima, D.H. Hussain, M.M.A. Almijbilee, Graphene-silver nanocomposite: synthesis, and adsorption study of cibacron blue dye from their aqueous solution, J. Southwest Jiaotong Univ., 54 (2019), https://doi.org/10.35741/issn.0258-2724.54.6.14.
  32. G. Crini, Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer, Dyes Pigm., 77 (2008) 415–426.
  33. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  34. Y. Liu, P. Liang, L. Guo, Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry, Talanta, 68 (2005) 25–30.
  35. S.B. Wang, Y. Boyjoo, A. Choueib, Z.H. Zhu, Removal of dyes from aqueous solution using fly ash and red mud, Water Res., 39 (2005) 129–138.
  36. A. Muhammad, A.U.H.A. Shah, S. Bilal, Comparative study of the adsorption of acid blue 40 on polyaniline, magnetic oxide and their composites: synthesis, characterization and application, Materials, 12 (2019) 2854.
  37. A.M. Farhan, N.M. Salem, A.H. Al-Dujaili, A.M. Awwad, Biosorption studies of Cr(VI) ions from electroplating wastewater by walnut shell powder, Am. J. Environ. Eng., 2 (2012) 188–195.
  38. M. Matouq, N. Jildeh, M. Qtaishat, M. Hindiyeh, M.Q. Al Syouf, The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods, J. Environ. Chem. Eng., 3 (2015) 775–784.