References
- IPCC, Climate Change 2013: The Physical Science Basis,
Contribution of Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change,
T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen,
J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley, Eds.,
Cambridge University Press, Cambridge, United Kingdom and
New York, NY, USA, 2013, p. 1535.
- J.J. González-Alemán, S. Pascale, J. Gutierrez-Fernandez,
H. Murakami, M.A. Gaertner, G.A. Vecchi, Potential increase
in hazard from Mediterranean hurricane activity with global
warming, Geophys. Res. Lett., 46 (2019) 1754–1764.
- R.A. Pielkejr, C. Landsea, M. Mayfield, J. Layer, R. Pasch,
Hurricanes and global warming, Bull. Am. Meteorol. Soc.,
86 (2005) 1571–1575.
- K. Emanuel, R. Sundararajan, J. Williams, Hurricanes and global
warming: results from downscaling IPCC AR4 simulations,
Bull. Am. Meteorol. Soc., 89 (2008) 347–367.
- Y.-K. Lim, S.D. Schubert, R. Kovach, A.M. Molod, S. Pawson,
The roles of climate change and climate variability in the 2017
Atlantic Hurricane season, Sci. Rep., 8 (2018) 16172.
- R. Romero, K. Emanuel, Medicane risk in a changing climate,
J. Geophys. Res. Atmos., 118 (2013) 5992–6001.
- M.A. Gaertner, J.J. González-Alemán, R. Romera, M. Domínguez,
V. Gil, E. Sánchez, C. Gallardo, M.M. Miglietta,
K.J.E. Walsh, D.V. Sein, S. Somot, A. Dell’Aquila, C. Teichmann,
B. Ahrens, E. Buonomo, A. Colette, S. Bastin, E. van Meijgaard,
G. Nikulin, Simulation of medicanes over the Mediterranean
Sea in a regional climate model ensemble: impact of ocean–
atmosphere coupling and increased resolution, Clim. Dyn.,
51 (2018) 1041–1057.
- ACTION MODULERS, Mohid Studio. Available at: http://actionmodulers.pt/products/mstudio/products-mohidstudio
2015.shtml (ref. March 2, 2019).
- MOHID Water Modelling System. Available at: www.mohid.
com (ref. March 02, 2019).
- G.A. Franz, P. Leitão, A. Santos, M. Juliano, R. Neves, From
regional to local scale modelling on the south-eastern Brazilian
shelf: case study of Paranaguá estuarine system, Braz. J.
Oceanogr., 64 (2016) 277–294.
- P.M. Paiva, J. Lugon Jr., A.N. Barreto, J.F. Silva, A.J. Silva
Neto, Comparing 3D and 2D computational modeling of an
oil well blowout using MOHID platform – a case study in the
Campos Basin, Sci. Total Environ., 595 (2017) 633–641.
- J. Lugon Jr., F.A. Kalas, P.P.G.W. Rodrigues, J.L. Jeveaux,
H. Gallo Neto, M.M. Juliano, A.J. Silva Neto, Lagrangian
trajectory simulation of floating objects in the state of São Paulo
coastal region, Defect Diffus. Forum, 396 (2019) 42–49.
- GEBCO, Gridded Bathymetry Data, General Bathymetric Chart
of Oceans. Available at: https://www.gebco.net/data\_and\_
products/gridded\_bathymetry\_data (ref. November 20, 2017).
- GFS, GFS Analysis, Global Forecast System. Available at: https://
www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs (ref. November 20, 2017).
- L. Carrére, F. Lyard, M. Cancet, A. Guillot, L. Roblout, FES2012:
A New Global Tidal Model Taking Advantage of Nearly 20
Years of Altimetry, In: Proceedings of the Meeting 20 Years of
Altimetry, Venice, 2012.
- COPERNICUS, Marine Environment Monitoring Service.
Available at: http://marine.copernicus.eu/services-portfolio/accessto-products/?option=com\_csw\&task=results (ref. November
20, 2017).
- G. Mellor, T. Yamada, Development of a turbulence closure
model for geophysical fluid problems, Rev. Geophys. Space
Phys., 20 (1982) 851–875.
- Permanent Service for Mean Sea Level (Isabella de Sagua
Station). Available at: https://www.psmsl.org/data/obtaining/
stations/411.php (ref. March 2, 2019).
- Sea Level Station Monitoring Facility (Key West Station, USA).
Available at: http://www.ioc-sealevelmonitoring.org/station.
php?code=kwfl (ref. March 2, 2019).
- Permanent Service for Mean Sea Level (Kalamai Station,
Greece). Available at: https://www.psmsl.org/data/obtaining/
stations/411.php (ref. March 2, 2019).
- Sea Level Station Monitoring Facility (Katacolo Station, Greece).
Available at: http://www.ioc-sealevelmonitoring.org/station.
php?code=kata (ref. March 2, 2019).
- F.D. Moura Neto, A.J. Silva Neto, An Introduction to Inverse
Problems with Applications, Springer-Verlag Berlin, Heidelberg,
ISBN 978–3-642–32556–4, 2013, p. 246.
- J. Lugon Jr., A.J. Silva Neto, P.P.G.W. Rodrigues, Assessment
of dispersion mechanisms in rivers by means of an inverse
problem approach, Inverse Prob. Sci. Eng., 16 (2008) 967–979.
- C. Oliveira, J. Lugon Jr., D.C. Knupp, A.J. Silva Neto, A. Prieto-Moreno, O. Llanes-Santiago, Estimation of kinetic parameters
in a chromatographic separation model via Bayesian inference,
Rev. Int. Métodos Numér. Cálc. Diseño Ing., 34 (2018) 1–13.
- J. Lugon Jr, A.J. Silva Neto, Solution of porous media inverse
drying problems using a combination of stochastic and
deterministic methods, J. Braz. Soc. Mech. Sci. Eng., 33 (2011)
400–407.