References

  1. N.P.F. Puoci, F. Iemma, U. Spizzirri, J. Cirillo, M. Curcio, Polymer in agriculture: a review, Am. J. Agric. Biol. Sci., 31 (2008) 299–314.
  2. A.A. Cuadri, C. Bengoechea, A. Romero, A. Guerrero, A naturalbased polymeric hydrogel based on functionalized soy protein, Eur. Polym. J., 85 (2016) 164–174.
  3. C. Demitri, F. Scalera, M. Madaghiele, A. Sannino, A. Maffezzoli, Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture, Int. J. Polym. Sci., 2013 (2013) 1–6.
  4. M. Al-Jabari, R.A. Ghyadah, R. Alokely, Recovery of hydrogel from baby diaper wastes and its application for enhancing soil irrigation management, J. Environ. Manage., 239 (2019) 255–261.
  5. A. Yoshioka, K. Tashiro, Solvent effect on the glass transition temperature of syndiotactic polystyrene viewed from timeresolved measurements of infrared spectra at the various temperatures and its simulation by molecular dynamics calculation, Macromolecules, 37 (2004) 467–472.
  6. P. D’Odorico, A. Porporato, Preferential states in soil moisture and climate dynamics, Proc. Natl. Acad. Sci. U.S.A., 101 (2004) 8848–8851.
  7. A.F. Van Loon, E. Tijdeman, N. Wanders, H.A.J. Van Lanen, A.J. Teuling, R. Uijlenhoet, How climate seasonality modifies drought duration and deficit, J. Geophys. Res., 119 (2014) 4640–4656.
  8. J.M. Costa, M.F. Ortuño, M.M. Chaves, Deficit irrigation as a strategy to save water: physiology and potential application to horticulture, J. Integr. Plant Biol., 49 (2007) 1421–1434.
  9. D.S. Battisti, R.L. Naylor, Historical warnings of future food insecurity with unprecedented seasonal heat, Science, 323 (2009) 240–244.
  10. M. Trnka, K.C. Kersebaum, J. Eitzinger, M. Hayes, P. Hlavinka, M. Svoboda, M. Dubrovský, D. Semerádová, B. Wardlow, E. Pokorný, M. Možný, D. Wilhite, Z. Žalud, Consequences of climate change for the soil climate in Central Europe and the central plains of the United States, Clim. Change, 120 (2013) 405–418.
  11. D.A. Wilhite, M.H. Glantz, Chapter 2: Understanding the Drought Phenomenon: The Role of Definitions, In: Planning for Drought: Toward a Reduction of Societal Vulnerability, Drought Mitigation Center Faculty Publications, 1987, pp. 11–27.
  12. J.K. Zhu, Abiotic stress signaling and responses in plants, Cell, 167 (2016) 313–324.
  13. H.B. Shao, L.Y. Chu, C.A. Jaleel, P. Manivannan, R. Panneerselvam, M.A. Shao, Understanding water deficit stress-induced changes in the basic metabolism of higher plantsbiotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe, Crit. Rev. Biotechnol., 29 (2009) 131–151.
  14. M.J. Zohuriaan-Mehr, K. Kabiri, Superabsorbent polymer materials: a review, Iran. Polym. J., English Ed., 17 (2008) 451–477.
  15. F.F. Montesano, A. Parente, P. Santamaria, A. Sannino, F. Serio, Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth, Agric. Agric. Sci. Procedia, 4 (2015) 451–458.
  16. J. Ostrowska-Czubenko, M. Pieróg, M. Gierszewska-Drużyńska, State of water in noncrosslinked and crosslinked hydrogel chitosan membranes - DSC studies, Faculty of Chemistry, Nicolaus Copernicus University ul. Gagarina 7, 87-100 Toruń, Poland, 2017.
  17. G.B. Marandi, N. Sharifnia, H. Hosseinzadeh, Synthesis of an alginate-poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with low salt sensitivity and high pH sensitivity, J. Appl. Polym. Sci., 101 (2006) 2927–2937.
  18. E.M. Ahmed, Development of a multi-component fertilizing hydrogel, Am. J. Agric. Sci., 3 (2008) 764–770.
  19. A.K. Mallik, M. Shahruzzaman, M.N. Sakib, A. Zaman, M.S. Rahman, M.M. Islam, M.S. Islam, P. Haque, M.M. Rahman, Benefits of Renewable Hydrogels over Acrylateand Acrylamide-Based Hydrogels, Springer International Publishing, 2019, pp. 197–243.
  20. M. Bahram, N. Mohseni, M. Moghtader, An Introduction to Hydrogels and Some Recent Applications, Emerg. Concepts Anal. Appl. Hydrogels, InTech, (2016), doi: 10.5772/64301.
  21. M.D. Mikhailov, M.N. Özisik, B.K. Shishedjiev, Diffusion in heterogeneous media, J. Heat Transfer, 104 (1982) 781–787.
  22. P. Costa, J.M. Sousa Lobo, Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci., 13 (2001) 123–133.
  23. H. Takeru, Rate of release of medicaments from ointment bases containing drugs in suspension, J. Pharm. Sci., 50 (1961) 874–875.
  24. T.F.M. Moreira, A. de Oliveira, T.B.V. da Silva, A.R. Dos Santos, O.H. Gonçalves, R. da S. Gonzalez, A.A. Droval, F.V. Leimann, Hydrogels based on gelatin: effect of lactic and acetic acids on microstructural modifications, water absorption mechanisms and antibacterial activity, LWT Food Sci. Technol., 103 (2019) 69–77.
  25. R.W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, N.A. Peppas, Mechanisms of solute release from porous hydrophilic polymers, Int. J. Pharm., 15 (1983) 25–35.
  26. F. Langenbucher, Letters to the Editor: linearization of dissolution rate curves by the Weibull distribution, J. Pharm. Pharmacol., 24 (1972) 979–981.
  27. C.-D. Lai, D.N. Murthy, M. Xie, Weibull Distributions and Their Applications, Springer Handbook of Engineering Statistics, Springer, London, 2006, pp. 63–78.
  28. J. Cai, R. Liu, Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: application to simulated and real kinetic conversion data, J. Phys. Chem. B, 111 (2007) 10681–10686.
  29. B. Potkonjak, J. Jovanović, B. Stanković, S. Ostojić, B. Adnadjević, Comparative analyses on isothermal kinetics of water evaporation and hydrogel dehydration by a novel nucleation kinetics model, Chem. Eng. Res. Des., 100 (2015) 323–330.
  30. S. Mishra, N. Thombare, M. Ali, S. Swami, Applications of Biopolymeric Gels in Agricultural Sector, Springer Singapore, Singapore, 2018, pp. 185–228.
  31. A. Mignon, N. De Belie, P. Dubruel, S. Van Vlierberghe, Superabsorbent polymers: a review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and ‘smart’ derivatives, Eur. Polym. J., 117 (2019) 165–178.
  32. T.M. Neethu, P.K. Dubey, A.R. Kaswala, Prospects and applications of hydrogel technology in agriculture, Int. J. Curr. Microbiol. Appl. Sci., 7 (2018) 3155–3162.
  33. F. Nnadi, C. Brave, Environmentally friendly superabsorbent polymers for water conservation in agricultural lands, J. Soil Sci. Environ. Manage, 2 (2011) 206–211.
  34. S. Behera, P.A. Mahanwar, Superabsorbent polymers in agriculture and other applications: a review, Polym. Technol. Mater., 59 (2020) 341–356.
  35. N. Thombare, S. Mishra, M.Z. Siddiqui, U. Jha, D. Singh, G.R. Mahajan, Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications, Carbohydr. Polym., 185 (2018) 169–178.
  36. X.Q. Ye, J.L. Meng, M. Wu, The effects of Solidago canadensis water extracts on maize seedling growth in association with the biomass allocation pattern, PeerJ, 7 (2019) e6564, doi: 10.7717/peerj.6564.
  37. K. Heise, M. Kirsten, Y. Schneider, D. Jaros, H. Keller, H. Rohm, K. Kalbitz, S. Fischer, From agricultural byproducts to value-added materials: wheat straw-based hydrogels as soil conditioners?, ACS Sustainable Chem. Eng., 7 (2019) 8604–8612.
  38. K. Rop, D. Mbui, N. Njomo, G.N. Karuku, I. Michira, R.F. Ajayi, Biodegradable water hyacinth cellulose-graft-poly(ammonium acrylate-co-acrylic acid) polymer hydrogel for potential agricultural application, Heliyon, 5 (2019) e01416, doi: 10.1016/j. heliyon.2019.e01416.
  39. F. Amiri, K. Kabiri, H. Bouhendi, H. Abdollahi, V. Najafi, Z. Karami, High gel-strength hybrid hydrogels based on modified starch through surface cross-linking technique, Polym. Bull., 76 (2019) 4047–4068.
  40. W. Tanan, J. Panichpakdee, S. Saengsuwan, Novel biodegradable hydrogel based on natural polymers: Synthesis, characterization, swelling/reswelling and biodegradability, Eur. Polym. J., 112 (2019) 678–687.
  41. V. Hasija, K. Sharma, V. Kumar, S. Sharma, V. Sharma, Green synthesis of agar/Gum Arabic based superabsorbent as an alternative for irrigation in agriculture, Vacuum, 157 (2018) 458–464.
  42. Y. Xiao, J. Chang, Preparation and characterization of bio- and UV- degradable superabsorbent hydrogels based on a novel cross-linker, Soft Mater., 18 (2020) 8–16.
  43. Saruchi, V. Kumar, H. Mittal, S.M. Alhassan, Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals, Int. J. Biol. Macromol., 132 (2019) 1252–1261.
  44. M.N. Alam, L.P. Christopher, Natural cellulose-chitosan crosslinked superabsorbent hydrogels with superior swelling properties, ACS Sustainable Chem. Eng., 6 (2018) 8736–8742.
  45. P. Calcagnile, T. Sibillano, C. Giannini, A. Sannino, C. Demitri, Biodegradable poly(lactic acid)/cellulose-based superabsorbent hydrogel composite material as water and fertilizer reservoir in agricultural applications, J. Appl. Polym. Sci., 136 (2019) 1–9.
  46. D. Skrzypczak, A. Witek-Krowiak, A. Dawiec-Liśniewska, D. Podstawczyk, K. Mikula, K. Chojnacka, Immobilization of biosorbent in hydrogel as a new environmentally friendly fertilizer for micronutrients delivery, J. Cleaner Prod., 241 (2019) 118387, doi: 10.1016/j.jclepro.2019.118387.