References

  1. M. Laissaoui, P. Palenzuela, M.A.S. Eldean, D. Nehari, D.C.A. Padilla, Techno-economic analysis of a stand-alone solar desalination plant at variable load conditions, Appl. Therm. Eng., 133 (2018) 659–670.
  2. P. Pal, A.K. Manna, Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes, Water Res., 44 (2010) 5750–5760.
  3. A. Cipollina, E. Tzen, V. Subiela, M. Papapetrou, J. Koschikowski, R. Schwantes, M. Wieghausf, G. Zaragoza, Renewable energy desalination: performance analysis and operating data of existing RES-desalination plants, Desal. Water Treat., 55 (2016) 1–21.
  4. A. Ali, R.A. Tufa, F. Macedonio, E. Curcio, E. Drioli, Membrane technology in renewable-energy-driven desalination, Renewable Sustainable Energy Rev., 81 (2018) 1–21.
  5. H.C. Duong, L. Xia, Z. Ma, P. Cooper, W. Ela, L.D. Nghiem, Assessing the performance of solar thermal driven membrane distillation for seawater desalination by computer simulation, J. Membr. Sci., 542 (2017) 133–142.
  6. R.G. Raluy, R. Schwantes, V.J. Subiela, B. Peñate, G. Melián, J.R. Betancort, Operational experience of a solar membrane distillation demonstration plant in Pozo Izquierdo-Gran Canaria Island (Spain), Desalination, 290 (2012) 1–13.
  7. J. Koschikowski, M. Wieghaus, M. Rommel, V.S. Ortin, B.P. Suarez, J.R.B. Rodríguez, Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas, Desalination, 248 (2009) 125–131.
  8. H.E.S. Fath, S.M. Elsherbiny, A.A. Hassan, M. Rommel, M. Wieghausb, J. Koschikowski, M. Vatansever, PV and thermally driven small-scale stand-alone solar desalination systems with very low maintenance needs, Desalination, 225 (2008) 58–69.
  9. F. Banat, N. Jwaied, M. Rommel, J. Koschikowski, M. Wieghaus, Desalination by a “compact SMADES” autonomous solarpowered membrane distillation unit, Desalination, 217 (2007) 29–37.
  10. F. Banat, N. Jwaied, M. Rommel, J. Koschikowski, M. Wieghaus, Performance evaluation of the “large SMADES” autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan, Desalination, 217 (2007) 17–28.
  11. R. Schwantes, A. Cipollina, F. Gross, J. Koschikowski, D. Pfeifle, M. Rolletschek, V. Subiela, Membrane distillation: solar and waste heat driven demonstration plants for desalination, Desalination, 323 (2013) 93–106.
  12. K. Zhani, K. Zarzoum, H. Ben Bacha, J. Koschikowski, D. Pfeifle, Autonomous solar powered membrane distillation systems: state of the art, Desal. Water Treat., 57 (2015) 1–14.
  13. L. Acevedo, J. Uche, A. Del Almo, F. Círez, S. Usón, A. Martínez, I. Guedea, Dynamic simulation of a trigeneration scheme for domestic purposes based on hybrid techniques, Energies, 9 (2016) 1–25.
  14. J.P. Vargas-Bautista, A.J. García-Cuéllar, S.L. Pérez-García, C.I. Rivera-Solorio, Transient simulation of a solar heating system for a small-scale ethanol-water distillation plant: thermal, environmental and economic performance, Energy Convers. Manage., 134 (2017) 347–360.
  15. N.T.U. Kumar, A.R. Martin, Co-production performance evaluation of a novel solar combi system for simultaneous pure water and hot water supply in urban households of UAE, Energies, 10 (2017) 1–22.
  16. G. Mohan, U. Kumar, M. Kumar, A. Martin, A novel solar thermal polygeneration system for sustainable production of cooling, clean water and domestic hot water in United Arab Emirates: dynamic simulation and economic evaluation, Appl. Energy, 167 (2015) 173–188.
  17. J. Zhang, J.-D. Li, S. Gray, Researching and modelling the dependence of MD flux on membrane dimension for scale-up purpose, Desal. Water Treat., 31 (2011) 144–150.
  18. J. Zhang, Theoretical and Experimental Investigation of Membrane Distillation, Ph.D. Thesis, Institute for Sustainability and Innovation, School of Engineering and Science, Victoria University, 2011. Available at: http://vuir.vu.edu.au/16101/.
  19. B.J. Newton, Modeling of Solar Storage Tanks, M.S. Thesis, University of Wisconsin--Madison, Dissertations Academic Mechanical Engineering, University of Wisconsin—Madison, College of Engineering, 1995.
  20. A. Hobbi, K. Siddiqui, Optimal design of a forced circulation solar water heating system for a residential unit in cold climate using TRNSYS, Solar Energy, 83 (2009) 700–714.
  21. C. Ghenai, A. Merabet, T. Salameh, E.C. Pigem, Grid-tied and stand-alone hybrid solar power system for desalination plant, Desalination, 435 (2018) 172–180.
  22. R.G. Lunnon, The latent heat of evaporation of aqueous salt solutions, Proc. Phys. Soc. London, 25 (2002) 180–191.
  23. B.B. Ashoor, S. Mansour, A. Giwa, V. Dufour, S.W. Hasan, Principles and applications of direct contact membrane distillation (DCMD): a comprehensive review, Desalination, 398 (2016) 222–246.
  24. L.M. Ayompe, A. Duffy, S.J. McCormack, M. Conlon, Validated TRNSYS model for forced circulation solar water heating systems with flat plate and heat pipe evacuated tube collectors, Appl. Therm. Eng., 31 (2011) 1536–1542.
  25. R. Chaker, H. Mhiri, H. Dhaouadi, P. Bournot, A TRNSYS dynamic simulation model for photovoltaic system powering a reverse osmosis desalination unit with solar energy, Int. J. Chem. Reactor Eng., 8 (2010) 1542–6580.
  26. J. Koschikowski, M. Wieghaus, M. Rommel, Solar thermaldriven desalination plants based on membrane distillation, Desalination, 156 (2003) 295–304.