References

  1. W. Tang, D. He, C. Zhang, T.D. Waite, Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI), Water Res., 121 (2017) 302–310.
  2. E. Pons-Branchu, M. Roy-Barman, L. Jean-Soro, A. Guillerme, P. Branchu, M. Fernandez, E. Dumont, E. Douville, J.-L. Michelot, A.M. Phillips, Urbanization impact on sulfur content of groundwater revealed by the study of urban speleothem-like deposits: case study in Paris, France, Sci. Total Environ., 579 (2017) 124–132.
  3. D.R. Mulinari, M.L.C.P. da Silva, Adsorption of sulphate ions by modification of sugarcane bagasse cellulose, Carbohydr. Polym., 74 (2008) 617–620.
  4. F. Liang, Y. Xiao, F. Zhao, Effect of pH on sulfate removal from wastewater using a bioelectrochemical system, Chem. Eng. J., 218 (2013) 147–153.
  5. S. Tait, W.P. Clarke, J. Keller, D.J.J.W.R. Batstone, Removal of sulfate from high-strength wastewater by crystallisation, Water Res., 43 (2009) 762–772.
  6. B. Sadeghalvad, A. Azadmehr, A. Hezarkhani, Sulfate decontamination from groundwater by metal layered double hydroxides functionalized high phosphorus iron ore waste as a new green adsorbent: experimental and modeling, Ecol. Eng., 106 (2017) 219–230.
  7. N. Arahman, S. Mulyati, M.R. Lubis, R. Takagi, H. Matsuyama, Removal profile of sulfate ion from mix ion solution with different type and configuration of anion exchange membrane in elctrodialysis, J. Water Process. Eng., 20 (2017) 173–179.
  8. W. Dou, Z. Zhou, L.-M. Jiang, A. Jiang, R. Huang, X. Tian, W. Zhang, D. Chen, Sulfate removal from wastewater using ettringite precipitation: magnesium ion inhibition and process optimization, J. Environ. Manage., 196 (2017) 518–526.
  9. F. Amaral, M. Kato, L. Florêncio, S.J.B.t. Gavazza, Color, organic matter and sulfate removal from textile effluents by anaerobic and aerobic processes, Bioresour. Technol., 163 (2014) 364–369.
  10. J. Lopez, M. Reig, O. Gibert, C. Valderrama, J.J.D. Cortina, Evaluation of NF membranes as treatment technology of acid mine drainage: metals and sulfate removal, Desalination, 440 (2018) 122–134.
  11. L. Pino, C. Vargas, A. Schwarz, R.J.C.E.J. Borquez, Influence of operating conditions on the removal of metals and sulfate from copper acid mine drainage by nanofiltration, Chem. Eng., 345 (2018) 114–125.
  12. A. Saber, M. Tafazzoli, S. Mortazavian, D.E. James, Investigation of kinetics and absorption isotherm models for hydroponic phytoremediation of waters contaminated with sulfate, J. Environ. Manage., 207 (2018) 276–291.
  13. Z. Hanzlikova, J. Braniša, K. Jomová, M. Fueloep, P. Hybler, M.J.S. Porubska, P. Technology, Electron beam irradiated sheep wool–prospective sorbent for heavy metals in wastewater, Sep. Purif. Technol., 193 (2018) 345–350.
  14. L. Zhang, Q. Zhai, X. Zhao, X. Min, Q. Zhu, J. Li, Modified wooliron biopolymer-based complex as an active heterogeneous decontamination photocatalyst, J. Energy Chem., 25 (2016) 1064–1069.
  15. G. Giri, P.K. Sahoo, R.K. Samal, Graft copolymerization onto wool fibers: grafting of acrylamide onto wool fibers initiated by potassium monopersulphate/Fe (II) redox system, J. Appl. Polym., 40 (1990) 471–483.
  16. H.H. Ghafar, T. Salem, E.K. Radwan, A.A. El-Sayed, M.A. Embaby, M.J. Salama, Modification of waste wool fiber as low cost adsorbent for the removal of methylene blue from aqueous solution, Egypt J. Chem., 60 (2017) 395–406.
  17. H. Zhang, Z. Yang, X. Zhang, N. Mao, Photocatalytic effects of wool fibers modified with solely TiO2 nanoparticles and N-doped TiO2 nanoparticles by using hydrothermal method, Chem. Eng., 254 (2014) 106–114.
  18. D.J. Kilpatrick, J.A. Maclaren, The dyeing properties of esterified wools, Text. Res. J., 39 (1969) 279–283.
  19. E. Moaseri, M. Baniadam, M. Maghrebi, M. Karimi, A simple recoverable titration method for quantitative characterization of amine-functionalized carbon nanotubes, Chem. Phys. Lett., 555 (2013) 164–167.
  20. J. Rodier, L’analyse de l’eau, Duno, 2009, pp. 363–364.
  21. V.K. Gupta, A. Rastogi, A. Nayak, Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material, J. Colloid Interface Sci., 342 (2010) 135–141.
  22. D. Pasquini, M.N. Belgacem, A. Gandini, A.A. Curvelo, Surface esterification of cellulose fibers: characterization by DRIFT and contact angle measurements, J. Colloid Interface Sci., 295 (2006) 79–83.
  23. M.M. Hassan, L. Schiermeister, M.P. Staiger, Thermal, chemical and morphological properties of carbon fibres derived from chemically pre-treated wool fibres, RSC Adv., 5 (2015) 55353–55362.
  24. M.E.A. Manaf, M. Tsuji, S. Nobukawa, M. Yamaguchi, Effect of moisture on the orientation birefringence of cellulose esters, Polymer, 3 (2011) 955–966.
  25. D.R. Rao, V.B. Gupta, Thermal characteristics of wool fibers, J. Macromol. Sci., 31 (1992) 149–162.
  26. E. Protopopoff, P. Marcus, Potential–pH diagram for sulfur and hydroxyl adsorbed on silver in water containing sulfides, Electrochim. Acta, 63 (2012) 22–27.
  27. H. Bouchoum, D. Benmoussa, A. Jada, M. Tahiri, O. Cherkaoui, Synthesis of amidoximated polyacrylonitrile fibers and its use as adsorbent for Cr(VI) ions removal from aqueous solutions, Environ. Prog. Sustainable Energy, 31 (2019), https://doi. org/10.1002/ep.13196.
  28. A. Moret, J. Rubio, Sulphate and molybdate ions uptake by chitin-based shrimp shells, Miner. Eng., 16 (2003) 715–722.
  29. B. Cojocariu, A.M. Mocanu, G. Nacu, L. Bulgariu, Possible utilization of PET waste as adsorbent for Orange G dye removal from aqueous media, Desal. Water Treat., 104 (2018) 338–345.
  30. G. Mahmoud, M. Abdel Khalek, E. Shoukry, M. Amin, A. Abdulghany, Removal of phosphate ions from wastewater by treated hydrogel based on chitosan, Egypt. J. Chem., 62 (2019) 1537–1549.
  31. H.H. Abdel Ghafar, M.A. Embaby, E.K. Radwan, A.M. Abdel- Aty, Biosorptive removal of basic dye methylene blue using raw and CaCl2 treated biomass of green microalga Scenedesmus obliquus, Desal. Water Treat., 81 (2017) 274–281.
  32. S.T. El-Wakeel, E.K. Radwan, H.H.A. Ghafar, A.S. Moursy, Humic acid-carbon hybrid material as lead(II) ions adsorbent, Desal. Water Treat., 74 (2017) 216–223.
  33. M.A. Embaby, H.H.A. Ghafar, M.M.E. Shakdofa, N.M. Khalil, E.K. Radwan, Removal of iron and manganese from aqueous solution using some clay minerals collected from Saudi Arabia, Desal. Water Treat., 65 (2017) 259–266.
  34. S. Hong, F.S. Cannon, P. Hou, T. Byrne, C. Nieto-Delgado, Adsorptive removal of sulfate from acid mine drainage by polypyrrole modified activated carbons: effects of polypyrrole deposition protocols and activated carbon source, Chemosphere, 184 (2017) 429–437.
  35. P.-l. Sang, Y.-y. Wang, L.-y. Zhang, L.-y. Chai, H.-y. Wang, Effective adsorption of sulfate ions with poly(m-phenylenediamine) in aqueous solution and its adsorption mechanism, Trans. Nonferrous Met. Soc. China, 23 (2013) 243–252.
  36. S.K. Milonjić, A consideration of the correct calculation of thermodynamic parameters of adsorption, J. Serb. Chem. Soc., 72 (2007) 1363–1367.
  37. G. Yingjuan, X. Juanqin, B. Qiang, D. Yewei, Z. Meina, Adsorption of sulfate onto protonated grafted-chitosan from aqueous solution, Chin. J. Environ. Eng., 10 (2013) 6.