References
- E. Giannakopoulos, K.C. Christoforidis, A. Tsipis, M. Jerzykiewicz,
Y. Deligiannakis, Influence of Pb (II) on the radical
properties of humic substances and model compounds, J. Phys.
Chem. A, 109 (2005) 2223–2232.
- P.Z. Araujo, P.J. Morando, M.A. Blesa, Interaction of catechol
and gallic acid with titanium dioxide in aqueous suspensions.
1. Equilibrium studies, Langmuir, 21 (2005) 3470–3474.
- N. Quici, M.I. Litter, A.M. Braun, E. Oliveros, Vacuum-UVphotolysis
of aqueous solutions of citric and gallic acids,
J. Photochem. Photobiol., A, 197 (2008) 306–312.
- F.F. Liu, S.G. Wang, J.L. Fan, G.H. Ma, Adsorption of
natural organic matter surrogates from aqueous solution
by multiwall carbon nanotubes, J. Phys. Chem. C, 116 (2012)
25783–25789.
- H. Ouachtak, S. Akhouairi, A.A. Addi, R.A. Akbour, A. Jada,
J. Douch, M. Hamdani, Mobility and retention of phenolic acids
through a goethite-coated quartz sand column, Colloids Surf.,
A, 546 (2018) 9–19.
- X. Guan, S. Yan, Z. Xu, H. Fan, Gallic acid-conjugated iron oxide
nanocomposite: an efficient, separable, and reusable adsorbent
for remediation of Al (III)-contaminated tannery wastewater,
J. Environ. Chem. Eng., 5 (2017) 479–487.
- D. Guo, Z. Zhang, D. Liu, H. Zheng, H. Chen, K. Chen,
A comparative study on the degradation of gallic acid by
Aspergillus oryzae and Phanerochaete chrysosporium, Water Sci.
Technol., 70 (2014) 175–181.
- N. Saikia, J. Sarma, J.M. Borah, S. Mahiuddin, Adsorption of
3, 4-dihydroxybenzoic acid onto hematite surface in aqueous
medium: importance of position of phenolic–OH groups and
understanding of the same using catechol as an auxiliary
model, J. Colloid Interface Sci., 398 (2013) 227–233.
- B. Cagnon, O. Chedeville, J.F. Cherrier, V. Caqueret, C. Porte,
Evolution of adsorption kinetics and isotherms of gallic acid on
an activated carbon oxidized by ozone: comparison to the raw
material, J. Taiwan Inst. Chem. Eng., 42 (2011) 996–1003.
- F. Han, C. Xu, W.Z. Sun, S.T. Yu, M. Xian, Effective removal of
salicylic and gallic acids from single component and impuritycontaining
systems using an isatin-modified adsorption resin,
RSC Adv., 7 (2017) 23164–23175.
- J.J. Rook, Formation of haloforms during chlorination of natural
waters, J. Water Treat. Exam., 23 (1974) 234–243.
- E. Utrera-Hidalgo, C. Moreno-Castilla, J. Rivera-Utrilla,
M.A. Ferro-García, F. Carrasco-Marín, Activated carbon columns
as adsorbents of gallic acid from aqueous solutions: effect of the
presence of different electrolytes, Carbon., 30 (1992) 107–111.
- J. Wang, A. Li, L. Xu, Y. Zhou, Adsorption of tannic and gallic
acids on a new polymeric adsorbent and the effect of Cu (II) on
their removal, J. Hazard. Mater., 169 (2009) 794–800.
- M. Goyal, R. Dhawan, M. Bhagat, Adsorption of gallic acid from
aqueous solution using fixed-bed activated carbon columns,
Sep. Sci. Technol., 45 (2010) 1265–1274.
- H. Ouachtak, R.A. Akbour, A. Jada, J. Douch, A.A. Addi,
M. Hamdani, Mobility of trihydroxybenzene compounds
through natural quartz sand: effect of hydroxyl groups
positions, J. Colloid. Sci. Biotechnol., 5 (2016) 173–181.
- W.W Tang, G.M. Zeng, J.L. Gong, J. Liang, P. Xu, C. Zhang,
B.B. Huang, Impact of humic/fulvic acid on the removal of
heavy metals from aqueous solutions using nanomaterials,
a review, Sci. Total Environ., 468 (2014) 1014–1027.
- A.E. Fazary, E. Hernowo, A.E. Angkawijaya, T.C. Chou,
C.H. Lin, M. Taha, Y.H. Ju, Complex formation between ferric
(III), chromium (III), and cupric (II) metal ions and (O, N) and
(O, O) donor ligands with biological relevance in aqueous
solution, J. Solution Chem., 40 (2011) 1965–1986.
- F.J. Beltràn, J.M. Encinar, J.F. Garacia-Araya, Oxidation by
ozone and chlorine dioxide of two distillery wastewater
contaminants: gallic acid and epicatechin, Water Res., 27 (1993)
1023–1032.
- M. Panizza, G. Cerisola, Electrochemical degradation of gallic
acid on a BDD anode, Chemosphere, 77 (2009) 1060–1064.
- L. Khaouane, Y. Ammi, S. Hanini, Modeling the retention of
organic compounds by nanofiltration and reverse osmosis
membranes using bootstrap aggregated neural networks,
Arabian. J. Sci. Eng., 42 (2017) 1443–1453.
- D.P. Zagklis, A.I. Vavouraki, M.E. Kornaros, C.A. Paraskeva,
Purification of olive mill wastewater phenols through membrane
filtration and resin adsorption/desorption, J. Hazard. Mater.,
285 (2015) 69–76.
- Z. Borneman, V. Gökmen, H.H. Nijhuis, Selective removal
of polyphenols and brown color in apple juices using PES/PVP membranes in a single ultrafiltration process, Sep. Purif.
Technol., 22 (2001) 53–61.
- D. Gumy, A.G. Rincon, R. Hajdu, C. Pulgarin, Solar
photocatalysis for detoxification and disinfection of water:
different types of suspended and fixed TiO2 catalysts study,
Sol. Energy, 80 (2006) 1376–1381.
- A.M. Silva, E. Nouli, N.P. Xekoukoulotakis, D. Mantzavinos,
Effect of key operating parameters on phenols degradation
during H2O2-assisted TiO2 photocatalytic treatment of simulated
and actual olive mill wastewaters, Appl. Catal., B, 73 (2007) 11–22.
- E. Lefebvre, B. Legube, Coagulation-floculation par le chlorure
ferrique de quelques acides organiques et phenols en solution
aqueuse, Water Res., 27 (1993) 433–447.
- P.C. Papaphilippou, C. Yiannapas, M. Politi, V.M. Daskalaki,
C. Michael, N. Kalogerakis, D. Fatta-Kassinos, Sequential
coagulation–flocculation, solvent extraction and photo-Fenton
oxidation for the valorization and treatment of olive mill
effluent, Chem. Eng. J., 224 (2013) 82–88.
- M. Mahdavi, M.M. Amin, Y. Hajizadeh, H. Farrokhzadeh,
A. Ebrahimi, Removal of different NOM fractions from spent
filter backwash water by polyaluminum ferric chloride and
ferric chloride, Arabian. J. Sci. Eng., 42 (2017) 1497–1504.
- H.C. Kim, S.J. Park, C.G. Lee, Y.U. Han, J.A. Park, S.B. Kim,
Humic acid removal from water by iron-coated sand: a column
experiment, Environ. Eng. Res., 14 (2009) 41–47.
- A. Genz, B. Baumgarten, M. Goernitz, M. Jekel, NOM removal by
adsorption onto granular ferric hydroxide: equilibrium, kinetics,
filter and regeneration studies, Water Res., 42 (2008) 238–248.
- R.A. Akbour, H. Ouachtak, A. Jada, S. Akhouairi, A.A. Addi,
J. Douch, M. Hamdani, Humic acid covered alumina as
adsorbent for the removal of organic dye from colored effluents,
Desal. Water Treat., 112 (2018) 207–217.
- C. Dong, W. Chen, C. Liu, Y. Liu, H. Liu, Synthesis of magnetic
chitosan nanoparticle and its adsorption property for humic
acid from aqueous solution, Colloids Surf., A, 446 (2014) 179–189.
- H. Ouachtak, R.A. Akbour, J. Douch, A. Jada, M. Hamdani,
Removal from water and adsorption onto natural quartz sand of
hydroquinone, J. Encapsulation Adsorpt. Sci., 5 (2015) 131–143.
- A. Bhatnagar, M. Sillanpää, Removal of natural organic matter
(NOM) and its constituents from water by adsorption, A review,
Chemosphere, 166 (2017) 497–510.
- Z. Zhang, Q. Pang, M. Li, H. Zheng, H. Chen, K. Chen,
Optimization of the condition for adsorption of gallic acid by
Aspergillus oryzae mycelia using Box–Behnken design, Environ.
Sci. Pollut. Res., 22 (2015) 1085–1094.
- M.Y. Chang, R.S. Juang, Adsorption of tannic acid, humic acid,
and dyes from water using the composite of chitosan and
activated clay, J. Colloid Interface Sci., 278 (2004) 18–25.
- T.S. Anirudhan, M. Ramachandran, Adsorptive removal of
tannin from aqueous solutions by cationic surfactant-modified
bentonite clay, J. Colloid Interface Sci., 299 (2006) 116–124.
- T. Hartono, S. Wang, Q. Ma, Z. Zhu, Layer structured graphite
oxide as a novel adsorbent for humic acid removal from
aqueous solution, J. Colloid Interface Sci., 333 (2009) 114–119.
- R.D. Vidic, M.T. Suidan, Role of dissolved oxygen on the
adsorptive capacity of activated carbon for synthetic and natural
organic matter, Environ. Sci. Technol., 25 (1991) 1612–1618.
- J.F. Garcia-Araya, F.J. Beltran, P. Alvarez, F.J. Masa, Activated
carbon adsorption of some phenolic compounds present in
agroindustrial wastewater, Adsorption, 9 (2003) 107–115.
- K.H. Choo, S.K. Kang, Removal of residual organic matter from
secondary effluent by iron oxides adsorption, Desalination,
154 (2003) 139–146.
- X.P. Qin, F. Liu, G.C. Wang, H. Hou, F.S. Li, L.P. Wang,
Fractionation of humic acid upon adsorption to goethite: batch
and column studies, Chem. Eng. J., 269 (2015) 272–278.
- C.H. Lai, C.Y. Chen, B.L. Wei, C.W. Lee, Adsorptive characteristics
of cadmium and lead on the goethite-coated sand
surface, J. Environ. Sci. Health., Part A, 36 (2001) 747–763.
- J.L. Gong, Y.L. Zhang, Y. Jiang, G.M. Zeng, Z.H. Cui, K. Liu,
C.H. Deng, Q.Y. Niu, J.H. Deng, S.Y. Huan, Continuous
adsorption of Pb (II) and methylene blue by engineered
graphite oxide-coated sand in fixed-bed column, Appl. Surf.
Sci., 330 (2015) 148–157.
- D. Dong, X. Hua, Y. Li, J. Zhang, D. Yan, Cd adsorption
properties of components in different freshwater surface
coatings: the important role of ferromanganese oxides, Environ.
Sci. Technol., 37 (2003) 4106–4112.
- N. Boujelben, J. Bouzid, Z. Elouear, Studies of lead retention
from aqueous solutions using iron-oxide-coated sorbents,
Environ. Technol., 30 (2009) 737–746.
- R.A. Akbour, H. Amal, A. Ait Addi, J. Douch, A. Jada,
M. Hamdani, Transport and retention of humic acid through
natural quartz sand: influence of the ionic strength and the
nature of divalent cation, Colloids Surf., A, 436 (2013) 589–598.
- A. Scheidegger, M. Borkovec, H. Sticher, Coating of silica
sand with goethite: preparation and analytical identification,
Geoderma, 58 (1993) 43–65.
- Y. Xu, L. Axe, Synthesis and characterization of iron oxidecoated
silica and its effect on metal adsorption, J. Colloid
Interface Sci., 282 (2005) 11–19.
- B. Rusch, K. Hanna, B. Humbert, Coating of quartz silica with
iron oxides: Characterization and surface reactivity of iron
coating phases, Colloids Surf., A, 353 (2010) 172–180.
- Y.S. Hwang, J.J. Lenhart, Dicarboxylic acid transport through
hematite-coated sand, Chemosphere, 78 (2010) 1049–1055.
- T. Tosco, J. Bosch, R.U. Meckenstock, R. Sethi, Transport of
ferrihydrite nanoparticles in saturated porous media: role of
ionic strength and flow rate, Environ. Sci. Technol., 46 (2012)
4008–4015.
- R. El Haouti, H. Ouachtak, A. El Guerdaoui, A. Amedlous,
E. Amaterz, R. Haounati, A. Ait Addi, N. El Alem, M.L. Taha,
Cationic dyes adsorption by Na-Montmorillonite Nano Clay:
experimental study combined with a theoretical investigation
using DFT-based descriptors and molecular dynamics simulations,
J. Mol. Liq., 290 (2019) 111139.
- H.D. Ruan, R.L. Frost, J.T. Kloprogge, L. Duong, Infrared
spectroscopy of goethite dehydroxylation: III. FT-IR microscopy
of in situ study of the thermal transformation of goethite to
hematite, Spectrochim. Acta, Part A, 58 (2002) 967–981.
- A. Davantès, G. Lefèvre, In situ characterization of (poly)
molybdate and (poly) tungstate ions sorbed onto iron (hydr)
oxides by ATR-FTIR spectroscopy, Eur. Phys. J. Spec. Top.,
224 (2015) 1977–1983.
- M.L.G. Vieira, V.M. Esquerdo, L.R. Nobre, G.L. Dotto,
L.A.A. Pinto, Glass beads coated with chitosan for the food
azo dyes adsorption in a fixed-bed column, J. Ind. Eng. Chem.,
20 (2014) 3387–3393.
- A.A. Ahmad, B.H. Hameed, Fixed-bed adsorption of reactive
azo dye onto granular activated carbon prepared from waste,
J. Hazard. Mater., 175 (2010) 298–303.
- Y. Wu, K. Zhou, S. Dong, W. Yu, H. Zhang, Recovery of gallic
acid from gallic acid processing wastewater, Environ. Technol.,
36 (2015) 661–666.
- K. Hanna, L. Lassabatere, B. Bechet, Transport of two naphthoic
acids and salicylic acid in soil: experimental study and empirical
modeling, Water Res., 46 (2012) 4457–4467.
- X. Yang, Z. Shi, L. Liu, Adsorption of Sb (III) from aqueous
solution by QFGO particles in batch and fixed-bed systems,
Chem. Eng. J., 260 (2015) 444–453.
- G. Nazari, H. Abolghasemi, M. Esmaieli, E.S. Pouya, Aqueous
phase adsorption of cephalexin by walnut shell-based activated
carbon: a fixed-bed column study, Appl. Surf. Sci., 375 (2016)
144–153.
- F.J. García-Mateos, R. Ruiz-Rosas, M.D. Marqués, L.M. Cotoruelo,
J. Rodríguez-Mirasol, T. Cordero, Removal of paracetamol
on biomass-derived activated carbon: modeling the fixed-bed
breakthrough curves using batch adsorption experiments,
Chem. Eng. J., 279 (2015) 18–30.
- S. Akhouairi, H. Ouachtak, A.A. Addi, A. Jada, J. Douch, Natural
sawdust as adsorbent for the eriochrome black t dye removal
from aqueous solution, Water Air Soil Pollut., 230 (2019) 181.
- H.C. Thomas, Heterogeneous ion exchange in a flowing system,
J. Am. Chem. Soc., 66 (1944) 1664–1666.
- Z. Aksu, F. Gönen, Biosorption of phenol by immobilized
activated sludge in a continuous packed bed: prediction of
breakthrough curves, Process Biochem., 39 (2004) 599–613.
- A.P. Lim, A.Z. Aris, Continuous fixed-bed column study and
adsorption modeling: removal of cadmium (II) and lead
(II) ions in aqueous solution by dead calcareous skeletons,
Biochem. Eng. J., 87 (2014) 50–61.
- Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics
I. A theoretical model for respirator cartridge service life, Am.
Ind. Hyg. Assoc. J., 45 (1984) 509–516.
- T. Ataei-Germi, A. Nematollahzadeh, Bimodal porous silica
microspheres decorated with polydopamine nanoparticles
for the adsorption of methylene blue in fixed-bed columns,
J. Colloid Interface Sci., 470 (2016) 172–182.
- M. Rabiei, H. Sabahi, A.H. Rezayan, Gallic acid-loaded
montmorillonite nanostructure as a new controlled release
system, Appl. Clay Sci., 119 (2016) 236–242.
- I.Y. Tóth, M. Szekeres, R. Turcu, S. Sáringer, E. Illés, D. Nesztor,
E. Tombácz, Mechanism of in situ surface polymerization
of gallic acid in an environmental-inspired preparation of
carboxylated core–shell magnetite nanoparticles, Langmuir,
30 (2014) 15451–15461.
- I.A. Jankovic, Z.V. Saponjic, M.I. Comor, J.M. Nedeljković,
Surface modification of colloidal TiO2 nanoparticles with
bidentate benzene derivatives, J. Phys. Chem. C, 113 (2009)
12645–12652.