References
- W. Hao, Y.C. Li, J.P. Lv, L. Chen, J.R. Zhu, The biological
effect of metal ions on the granulation of aerobic granular
activated sludge, J. Environ. Sci., 44 (2016) 252–259.
- J.T. Zou, Y.Q. Tao, J. Li, S.Y. Wu, Y.J. Ni, Cultivating aerobic
granular sludge in a developed continuous-flow reactor with
two-zone sedimentation tank treating real and low-strength
wastewater, Bioresour. Technol., 247 (2018) 776–783.
- J. Liu, J. Li, Y. Tao, B. Sellamuthu, R. Walsh, Analysis of bacterial,
fungal and archaeal populations from a municipal wastewater
treatment plant developing an innovative aerobic granular
sludge process, World J. Microbiol. Biotechnol., 33 (2017) 14.
- Q.G. Zhang, J.J. Hu, D.-J. Lee, Aerobic granular processes:
current research trends, Bioresour. Technol., 210 (2016) 74–80.
- A. Giesen, L.M.M. de Bruin, R.P. Niermans, H.F. van der Roest,
Advancements in the application of aerobic granular biomass
technology for sustainable treatment of wastewater, Water
Pract. Technol., 8 (2013) 47–54.
- M. Pronk, M.K. de Kreuk, B. de Bruin, P. Kamminga,
R. Kleerebezem, M.C.M. van Loosdrecht, Full scale performance
of the aerobic granular sludge process for sewage treatment,
Water Res., 84 (2015) 207–217.
- J. Li, L.-B. Ding, A. Cai, G.-X. Huang, H. Horn, Aerobic sludge
granulation in a full-scale sequencing batch reactor, Biomed.
Res. Int., 2014 (2014) 12 p, doi: 10.1155/2014/268789.
- H.G. Yang, J. Li, J. Liu, L.B. Ding, T. Chen, G.X. Huang, J.Y. Shen,
A case for aerobic sludge granulation: from pilot to full scale,
J. Water Reuse Desal., 6 (2016) 188–194.
- K. Bernat, A. Cydzik-Kwiatkowska, I. Wojnowska-Baryła,
M. Karczewska, Physicochemical properties and biogas
productivity of aerobic granular sludge and activated sludge,
Biochem. Eng. J., 117 (2017) 43–51.
- Y.K. Dai, S. Huang, J.L. Liang, S.W. Zhang, S.Y. Sun, B. Tang,
Q. Xu, Role of organic compounds from different EPS fractions
and their effect on sludge dewaterability by combining
anaerobically mesophilic digestion pre-treatment and Fenton’s
reagent/lime, Chem. Eng. J., 321 (2017) 123–138.
- L.H. Mikkelsen, K. Keiding, Physico-chemical characteristics
of full scale sewage sludges with implications to dewatering,
Water Res., 36 (2002a) 2451–2462.
- M.J. Higgins, J.T. Novak, Characterization of exocellular protein
and its role in bioflocculation, J. Environ. Eng., 123 (1997)
479–485.
- W.J. Zhang, B.D. Cao, D.S. Wang, T. Ma, D.H. Yu, Variations
in distribution and composition of extracellular polymeric
substances (EPS) of biological sludge under potassium ferrate
conditioning: effects of pH and ferrate dosage, Biochem. Eng. J.,
106 (2016) 37–47.
- B.S. McSwain, R.L. Irvine, M. Hausner, P.A. Wilderer, Composition
and distribution of extracellular polymeric substances
in aerobic flocs and granular sludge, Appl. Environ. Microbiol.,
71 (2005) 1051–1057.
- J. Vaxelaire, P. Cézac, Moisture distribution in activated sludges:
a review, Water Res., 38 (2004) 2215–2230.
- J. Kopp, N. Dichtl, Prediction of full-scale dewatering results
by determining the water distribution of sewage sludges, Water
Sci. Technol., 42 (2000) 141–149.
- S. Pan, J.-H. Tay, Y.-X. He, S.T.-L. Tay, The effect of hydraulic
retention time on the stability of aerobically grown microbial
granules, Lett. Appl. Microbiol., 38 (2010) 158–163.
- L.L. Zhang, X. Chen, J.M. Chen, W.M. Cai, Role mechanism of
extracellular polymeric substances in the formation of aerobic
granular sludge, Environ. Sci., 28 (2007) 795.
- J. Li, L. Liu, J. Liu, T. Ma, A. Yan, Y.J. Ni, Effect of adding
alum sludge from water treatment plant on sewage sludge
dewatering, J. Environ. Chem. Eng., 4 (2016) 746–752.
- P. Samaras, C.A. Papadimitriou, I. Haritou, A.I. Zouboulis,
Investigation of sewage sludge stabilization potential by the
addition of fly ash and lime, J. Hazard. Mater., 154 (2008)
1052–1059.
- E. Neyens, J. Baeyens, A review of thermal sludge pre-treatment
processes to improve dewaterability, J. Hazard. Mater., 98 (2003)
51–67.
- G.-P. Sheng, H.-Q. Yu, X.-Y. Li, Extracellular polymeric
substances (EPS) of microbial aggregates in biological
wastewater treatment systems: a review, Biotechnol. Adv.,
28 (2010) 882–894.
- Y.Q. Liu, J.H. Tay, Fast formation of aerobic granules by
combining strong hydraulic selection pressure with overstressed
organic loading rate, Water Res., 80 (2015) 256–266.
- C. Zhang, H.M. Zhang, F.L. Yang, Diameter control and stability
maintenance of aerobic granular sludge in an A/O/A SBR,
Sep. Purif. Technol., 149 (2015) 362–369.
- X.C. Quan, Y. Cen, F. Lu, L.Y. Gu, J.Y. Ma, Response of aerobic
granular sludge to the long-term presence to nanosilver
in sequencing batch reactors: reactor performance, sludge
property, microbial activity and community, Sci. Total Environ.,
506–507 (2015) 226–233.
- N. Kishida, J.Y. Kim, S. Tsuneda, R. Sudo, Anaerobic/oxic/
anoxic granular sludge process as an effective nutrient removal
process utilizing denitrifying polyphosphate-accumulating
organisms, Water Res., 40 (2006) 2303–2310.
- A.L. Yan, J. Li, L. Liu, T. Ma, J. Liu, Y.J. Ni, Centrifugal
dewatering of blended sludge from drinking water treatment
plant and wastewater treatment plant, J. Mater. Cycles Waste
Manage., 20 (2018) 421–430.
- D.J. Lee, Moisture distribution and removal efficiency of waste
activated sludges, Water Sci. Technol., 33 (1996) 269–272.
- S.S. Adav, D.-J. Lee, J.-H. Tay, Extracellular polymeric substances
and structural stability of aerobic granule, Water Res., 42 (2008)
1644–1650.
- B. Frølund, T. Griebe, P.H. Nielsen, Enzymatic activity in the
activated-sludge floc matrix, Appl. Microbiol. Biotechnol.,
43 (1995) 755–761.
- A. Baker, Fluorescence properties of some farm wastes:
implications for water quality monitoring, Water Res., 36 (2002)
189–195.
- J.Y. Lai, J.C. Liu, Co-conditioning and dewatering of alum
sludge and waste activated sludge, Water Res., 50 (2004) 41–48.
- L. Jahn, E. Saracevic, K. Svardal, J. Krampe, Anaerobic
biodegradation and dewaterability of aerobic granular sludge,
J. Chem. Technol. Biotechnol., 94 (2019) 2908–2916.
- D.Q. He, H.W. Luo, B.C. Huang, C. Qian, H.Q. Yu, Enhanced
dewatering of excess activated sludge through decomposing
its extracellular polymeric substances by a Fe@Fe2O3-based
composite conditioner, Bioresour. Technol., 218 (2016) 526–532.