References

  1. M. Qasim, N.A. Darwish, S. Sarp, N. Hilal, Water desalination by forward (direct) osmosis phenomenon: a comprehensive review, Desalination, 374 (2015) 47–69.
  2. R. Valladares Linares, Z. Li, S. Sarp, S.S. Bucs, G. Amy, J.S. Vrouwenvelder, Forward osmosis niches in seawater desalination and wastewater reuse, Water Res., 66 (2014) 122–139.
  3. F.A. Siddiqui, Q. She, A.G. Fane, R.W. Field, Exploring the differences between forward osmosis and reverse osmosis fouling, J. Membr. Sci., 565 (2018) 241–253.
  4. X. Song, Z. Liu, D.D. Sun, Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate, Adv. Mater., 23 (2011) 3256–3260.
  5. H.Q. Liang, W.S. Hung, H.H. Yu, C.C. Hu, K.R. Lee, J.Y. Lai, Z.K. Xu, Forward osmosis membranes with unprecedented water flux, J. Membr. Sci., 529 (2017) 47–54.
  6. R.M. El Khaldi, M.E. Pasaoglu, S. Guclu, Y.Z. Menceloglu, R. Ozdogan, M. Celebi, M.A. Kaya, I. Koyuncu, Fabrication of high-performance nanofiber-based FO membrane, Desal. Water Treat., 147 (2019) 56–72.
  7. J. Marc, C. Puguan, H. Kim, K. Lee, H. Kim, Low internal concentration polarization in forward osmosis membranes with hydrophilic crosslinked PVA nano fibers as porous support layer, Desalination, 336 (2014) 24–31.
  8. M. Ghanbari, D. Emadzadeh, W.J. Lau, H. Riazi, D. Almasi, A.F. Ismail, Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates, Desalination, 377 (2016) 152–162.
  9. W. Kuang, Z. Liu, H. Yu, G. Kang, X. Jie, Y. Jin, Y. Cao, Investigation of internal concentration polarization reduction in forward osmosis membrane using nano-CaCO3 particles as sacrificial component, J. Membr. Sci., 497 (2016) 485–493.
  10. N. Bui, J.R. Mccutcheon, Nanoparticle-embedded nano fibers in highly permselective thin-film nanocomposite membranes for forward osmosis, J. Membr. Sci., 518 (2016) 338–346.
  11. M. Zheng, X. Zhao, S. Xu, D. Lu, Ultrathin support-free membrane with high water flux for forward osmosis desalination, Water Air Soil Pollut., 230 (2019), doi: 10.1007/ s11270-019-4192-z.
  12. M. Li, V. Karanikola, X. Zhang, L. Wang, M. Elimelech, A selfstanding, support-free membrane for forward osmosis with no internal concentration polarization, Environ. Sci. Technol. Lett., 5 (2018) 266–271.
  13. A.H. Hawari, A. Al-Qahoumi, A. Ltaief, S. Zaidi, A. Altaee, Dilution of seawater using dewatered construction water in a hybrid forward osmosis system, J. Cleaner Prod., 195 (2018) 365–373.
  14. S. Moulik, P. Vadthya, Y.R. Kalipatnapu, S. Chenna, S. Sundergopal, Production of fructose sugar from aqueous solutions: nanofiltration performance and hydrodynamic analysis, J. Cleaner Prod., 92 (2015) 44–53.
  15. C. Morrow, A. Childress, Evidence, determination, and implications of membrane-independent limiting flux in forward osmosis systems, Environ. Sci. Technol., 53 (2019) 4380–4388.
  16. A.M. Alshwairekh, A. Alghafis, A.M. Alwatban, U.F. Algasair, A. Oztekin, The effect of membrane and channel corrugation in forward osmosis membrane modules – nummerical analyses, Desalination, 460 (2019) 41–55.
  17. V. Geraldes, V. Semião, M.N. De Pinho, Flow and mass transfer modelling of nanofiltration, J. Membr. Sci., 191 (2001) 109–128.
  18. A.E. Anqi, N. Alkhamis, A. Oztekin, Numerical simulation of brackish water desalination by a reverse osmosis membrane, Desalination, 369 (2015) 156–164.
  19. A.E. Anqi, N. Alkhamis, A. Oztekin, Computational study of desalination by reverse osmosis — three-dimensional analyses, Desalination, 388 (2016) 38–49.
  20. A.E. Anqi, N. Alkhamis, A. Oztekin, Steady three dimensional flow and mass transfer analyses for brackish water desalination by reverse osmosis membranes, Int. J. Heat Mass Transfer, 101 (2016) 399–411.
  21. M. Usta, A.E. Anqi, A. Oztekin, Reverse osmosis desalination modules containing corrugated membranes – computational study, Desalination, 416 (2017) 129–139.
  22. M. Alrehili, M. Usta, N. Alkhamis, A.E. Anqi, A. Oztekin, Flows past arrays of hollow fiber membranes – gas separation, Int. J. Heat Mass Transfer, 97 (2016) 400–411.
  23. L.-Z. Zhang, Convective mass transport in cross-corrugated membrane exchangers, J. Membr. Sci., 260 (2005) 75–83.
  24. L. Zhang, Z. Chen, Convective heat transfer in cross-corrugated triangular ducts under uniform heat flux boundary conditions, Int. J. Heat Mass Transfer, 54 (2011) 597–605.
  25. I.S. Kang, H.N. Chang, The effect of turbulence promoters on mass transfer – numerical analysis and flow visualization, Int. J. Heat Mass Transfer, 25 (1982) 1167–1181.
  26. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32 (1994) 1598–1605.
  27. J.A. Baker, Membrane technology and applications, Q. Rev. Biol., 79 (2004) 443.
  28. L. Xia, M.F. Andersen, C. He, R. Mccutcheon, Novel commercial aquaporin flat-sheet membrane for forward osmosis, 56 (2017) 11919–11925.
  29. M.F. Gruber, C.J. Johnson, C.Y. Tang, M.H. Jensen, L. Yde, C. Hélix-Nielsen, Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems, J. Membr. Sci., 379 (2011) 488–495.
  30. S. Wardeh, H.P. Morvan, CFD simulations of flow and concentration polarization in spacer-filled channels for application to water desalination, Chem. Eng. Res. Des., 86 (2008) 1107–1116.
  31. N. Akther, S. Daer, S.W. Hasan, Effect of flow rate, draw solution concentration and temperature on the performance of TFC FO membrane, and the potential use of ro reject brine as a draw solution in FO–RO hybrid systems, Desal. Water Treat., 136 (2018) 65–71.