References

  1. C.K. Hsieh, Thermal analysis of CPC collectors, Sol. Energy, 27 (1981) 19–29.
  2. P. Wang, D.Y. Liu, C. Xu, L. Zhou, L. Xia, Conjugate heat transfer modeling and asymmetric characteristic analysis of the heat collecting element for a parabolic trough collector, Int. J. Therm. Sci., 101 (2016) 68–84.
  3. K. Vafal, N. Zhu, W. Wang, Analysis of asymmetric disk-shaped and flat-plate heat pipes, J. Heat Transfer, 117 (1995) 209–218.
  4. N. Zhu, K. Vafai, Analytical modeling of the startup characteristics of asymmetrical flat-plate and diskshaped heat pipes, Int. J. Heat Mass Transfer, 41 (1998) 2619–2637.
  5. A. Shafieian, M. Khiadani, A. Nosrati, A review of latest developments, progress, and applications of heat pipe solar collectors, Renewable Sustainable Energy Rev., 95 (2018) 273–304.
  6. B. Window, GL. Hardin, Progress in the materials science of allglass evacuated collectors, Sol. Energy, 32 (1984) 609–623.
  7. B. Rassamakin, S. Khairnasov, V. Zaripov, A. Rassamakin, O. Alforova, Aluminum heat pipes applied in solar collectors, Sol. Energy, 94 (2013) 145–154.
  8. H. Han, X.Y. Cui, Y. Zhu, S. Sun, A comparative study of the behavior of working fluids and their properties on the performance of pulsating heat pipes (PHP), Int. J. Therm. Sci., 82 (2014) 138–147.
  9. M. Arab, A. Abbas, A model-based approach for analysis of working fluids in heat pipes, Appl. Therm. Eng.,73 (2014) 751–763.
  10. H.B. Liang, M. Fan, S.J. You, W.D. Zhen, H. Zhang, T.Z. Ye, X.J. Zheng, A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors, Appl. Energy, 201 (2017) 60–68.
  11. W.D. Zheng, L. Yang, H. Zhang, S.J. You, C.G. Zhu, Numerical and experimental investigation on a new type of compound parabolic concentrator solar collector, Energy Convers. Manage., 129 (2016) 11–22.