References
- A. Bour, F. Mouchet, S. Cadarsi, J. Silvestre, E. Chauvet,
J.-M. Bonzom, C. Pagnout, H. Clivot, L. Gauthierad, E. Pinelliad,
Impact of CeO2 nanoparticles on the functions of freshwater
ecosystems: a microcosm study, Environ. Sci. Nano, 3 (2016)
830–838.
- S. Pakrashi, S. Dalai, R. Verma, B. Sneha, N. Chandrasekaran,
A. Mukherjee, A temporal study on fate of Al2O3 nanoparticles
in a fresh water microcosm at environmentally relevant low
concentrations, Ecotoxicol. Environ. Saf., 84 (2012) 70–77.
- A. Elsaesser, C.H. Howard, Toxicology of nanoparticles, Adv.
Drug Delivery Rev., 64 (2011) 129–137.
- N. Doskocz, M. Załęska-Radziwiłł, K. Affek, M. Łebkowska,
Effects of selected nanoparticles on aquatic plant, Desal. Water
Treat., 117 (2018) 42–48.
- M. Załęska-Radziwiłł, N. Doskocz, Ecotoxicity of zirconium
oxide nanoparticles in relation to aquatic invertebrates, Desal.
Water Treat., 57 (2016) 1443–1450.
- N.C. Mueller, B. Nowack, Exposure modeling of engineered
nanoparticles in the environment, Environ. Sci. Technol.,
42 (2008) 4447–4453.
- F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack, Modeled
environmental concentrations of engineered nanomaterials
(TiO2, ZnO, Ag, CNT, fullerenes) for different regions, Environ.
Sci. Technol., 43 (2009) 9216–9222.
- M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier,
A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2
to bacteria Vibrio fischeri and crustaceans Daphnia magna and
Thamnocephalus platyurus, Chemosphere, 71 (2008) 1308–1316.
- R. Zouzelka, P. Cihakova, J. RihovaAmbrozova, J. Rathousky,
Combined biocidal action of silver nanoparticles and ions
against Chlorococcales (Scenedesmus quadricauda, Chlorella
vulgaris) and filamentous algae (Klebsormidium sp.), Environ.
Sci. Pollut. Res., 23 (2016) 8317–8326.
- C. Walters, E. Poolb, V. Somerset, Aggregation and dissolution
of silver nanoparticles in a laboratory based freshwater
microcosm under simulated environmental conditions, Toxicol.
Environ. Chem., 95 (2013) 1690–1701.
- A. Kahru, H.C. Dubourguier, From ecotoxicology to nanoecotoxicology,
J. Toxicol., 269 (2010) 105–119.
- M. Sadiq, S. Pakrashi, N. Chandrasekaran, A. Mukherjee,
Studies on toxicity of aluminum oxide (Al2O3) nanoparticles
to microalgae species: Scenedesmus sp. and Chlorella sp.,
J. Nanopart. Res., 13 (2011) 3287–3299.
- N. Chrzanowska, M. Załęska-Radziwiłł, Impact of selected
nanoparticles on higher plants, Int. Issues Eng. Environ. Prot.,
2 (2012) 111–122.
- Technical Support Document for Water Quality – Based Toxics
Control, US Environmental Protection Agency – Office of Water
(EN-336) EPA/505/2-90-001 PB 91-127415, 1991.
- Commission Directive 93/67/EEC of 20 July 1993, Laying
Down the Principles for Assessing the Risk to Humans and
the Environment of Notified Substances in Accordance with
Council Directive 67/548/EWG, 1993.
- T.Y. Sun, F. Gottschalk, K. Hungerbühler, B. Nowack, Comprehensive
probabilistic modelling of environmental emissions of
engineered nanomaterials, Environ. Pollut., 185 (2014) 69–76.
- S.K. Brar, V. Mausam, R.D. Tyagi, R.Y. Surampalli, Engineered
nanoparticles in wastewater and wastewater sludge – evidence
and impacts, Waste Manage., 30 (2008) 504–520.
- S. Seshadri, The Chemistry of Nanomaterials: Synthesis,
Properties and Aplications, Wiley-VchVerlag GMBH and Co.,
Weinheim, 2004.
- J.A. Rodríguez, M. Fernández-García, Synthesis, Properties,
and Applications of Oxide Nanomaterials, John Wiley and
Sons, New Jersey, 2008.
- M. Załęska-Radziwiłł, N. Doskocz, DNA changes in Pseudomonas
putida induced by aluminium oxide nanoparticles using RAPD
analysis, Desal. Water Treat., 57 (2015) 1573–1581.
- LCK314 Cuvette Test ChZT 15–150 mg/L O2, Hach Lange,
Germany.
- LCK514 Cuvette Test ChZT 100–2,000 mg/L O2, Hach Lange,
Germany.
- LCK 339 0.23 – 13.50 mg/L NO3–N-Cuvette Test of Nitrogens,
Hach Lange, Germany.
- LCK349 Cuvette Test of Phosphorus 0.05–1.5 mg/L PO4–P, Hach
Lange, Germany.
- Ammonia-Nessler Method 8038, 0.02–2.50 mg/L NH3–N, Hach
Lange, Germany.
- Method 8507, NitriVer 3 Nitrite, Hach Lange, Germany.
- Method HACH 8190/ HACH 8178, Hach Lange, Germany.
- Water Quality – Determination of Chloride – Silver Nitrate
Titration with Chromate Indicator (Mohr’s Method), PN-ISO
ISO 9297:1994, International Organization for Standardization,
Geneva, Switzerland, 1989.
- APHA/AWWA/WEF, Standard Methods for the Examination
of Water and Wastewater,
20th ed., American Public Health
Association/American Water Works Association/Water
Environment Federation, Washington, DC, USA, 1999.
- D.H. Eikelboom, Process Control of Activated Sludge Plants by
Microscopic Investigation, IWA Publishing, London, 2000.
- C.E. Shannon, A mathematical theory of communication, Bell
Syst. Tech. J., 27 (1948) 379–423.
- Water Quality – Determination of the Toxic Effect of Water
Constituents and Wastewater to Duckweed (Lemna minor) –
Duckweed Growth Inhibition Test, PN-EN ISO 20079:2004.
- Water Quality – Quantitative Assay of Culturable Micro-
Organisms, Determination of the Colony Count by Inoculation
in a Nutrient Agar Culture Medium, PN-EN ISO 6222:2004.
- L. Góth, A simple method for determination of serum catalase
activity and revision of reference range, Clin. Chim. Acta,
196 (1991) 143–151.
- L. Kłyszejko-Stefanowicz, Exercises in Biochemistry, Polish
Scientific Publishers PWN, Warsaw, 2003.
- Water and Sewage – Special Investigations of Sludge – Part 8:
Determination of Dehydrogenase Activity in Activated Sludge
by Spectrophotometric Method with Triphenyltetrazolium
Chloride, PN–C–04616–8, 2008.
- Nanoparticles in the Environment Risk Assessment based on
Exposure-Modelling, ETH Zurich, Department of Environmental
Sciences, Nanotechnology White Paper, United States
Environmental Protection Agency, 2007.
- A. Wolińska, Z. Stępniewska, Dehydrogenase Activity in the
Soil Environment, Dehydrogenases, Rosa Angela Canuto,
IntechOpen, 2012, Available at: https://www.intechopen.
com/books/dehydrogenases/dehydrogenase-activity-in-thesoil-
environment
- H.S. Jiang, L. Yin, N.N. Ren, L. Xian, S. Zhao, W. Li, B. Gontero,
The effect of chronic silver nanoparticles on aquatic system in
microcosms, Environ. Pollut., 223 (2017) 395–402.
- D. Kumar, A. Parashar, N. Chandrasekaran, A. Mukherjee,
The stability and fate of synthesized zero-valent iron nanoparticles
in freshwater microcosm system, 3 Biotech, 7 (2017) 1–9.
- V. Vijayaraj, C. Liné, S. Cadarsi, C. Salvagnac, D. Baqué,
A. Elger, M. Barret, F. Mouchet, C. Larue, Transfer and
ecotoxicity of titanium dioxide nanoparticles in terrestrial and
aquatic Ecosystems: a microcosm study, Environ. Sci. Technol.,
52 (2018) 12757–12764.
- S. George, S. Lin, Z. Ji, C.R. Thomas, L. Li, M. Mecklenburg,
H. Meng, X. Wang, H. Zhang, T. Xia, J.N. Hohman, S. Lin,
J.I. Zink, P.S. Weiss, A.E. Nel, Surface defects on plate-shaped
silver nanoparticles contribute to its hazard potential in a
fish gill cell line and zebrafish embyos, ACS Nano, 6 (2012)
3745–3759.
- N. Doskocz, K. Affek, M. Załęska-Radziwiłł, Effect of
aluminium oxide nanoparticles on the enzymatic activity on
microorganisms of activated sludge, E3S Web Conf., 44 (2018)
1–9, doi: 10.1051/e3sconf/20184400033.
- M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew,
K.N. Beeregowda, Toxicity, mechanism and health effects of
some heavy metals, Interdiscip. Toxicol., 7 (2014) 60–72.
- C. Andreini, I. Bertini, G. Cavallaro, G.L. Holliday, J.M. Thornton,
Metal ions in biological catalysis: from enzyme databases
to general principles, J. Biol. Inorg. Chem., 13 (2008)
1205–1218.
- S. Kausar, F. Wang, H. Cui, The role of mitochondria in
reactive oxygen species generation and its implications for
neurodegenerative diseases, Cells, 7 (2018) 274.
- B. Campos, C. Rivetti, P. Rosenkranz, J.M. Navas, C. Barata,
Effects of nanoparticles of TiO2 on food depletion and lifehistory
responses of Daphnia magna, Aquat. Toxicol., 130–131
(2013) 174–183.
- F. Mouchet, P. Landois, E. Sarremejean, G. Bernard, P. Puech,
E. Pinelli, E. Flahaut, L. Gauthier, Characterisation and in
vivo ecotoxicity evaluation of double-wall carbon nanotubes
in larvae of the amphibian Xenopus laevis, Aquat. Toxicol.,
87 (2008) 127–137.
- S.E. Robinson, N.A. Capper, S.J. Klaine, The effects of
continuous and pulsed exposures of suspended clay on the
survival, growth, and reproduction of Daphnia magna, Environ.
Toxicol. Chem., 29 (2010) 168–175.
- Y. Xue, Q. Chen, T. Ding, J. Sun, SiO2 nanoparticle-induced
impairment of mitochondrial energy metabolism in hepatocytes
directly and through a Kupffer cell-mediated pathway in vitro,
Int. J. Nanomed., 9 (2014) 2891–2903.
- Resolution European Parliament on Regulatory Aspects
of Nanomaterials (2008/2208(INI)), European Parliament,
Brussels, Belgium, 2009.