References

  1. A. Bour, F. Mouchet, S. Cadarsi, J. Silvestre, E. Chauvet, J.-M. Bonzom, C. Pagnout, H. Clivot, L. Gauthierad, E. Pinelliad, Impact of CeO2 nanoparticles on the functions of freshwater ecosystems: a microcosm study, Environ. Sci. Nano, 3 (2016) 830–838.
  2. S. Pakrashi, S. Dalai, R. Verma, B. Sneha, N. Chandrasekaran, A. Mukherjee, A temporal study on fate of Al2O3 nanoparticles in a fresh water microcosm at environmentally relevant low concentrations, Ecotoxicol. Environ. Saf., 84 (2012) 70–77.
  3. A. Elsaesser, C.H. Howard, Toxicology of nanoparticles, Adv. Drug Delivery Rev., 64 (2011) 129–137.
  4. N. Doskocz, M. Załęska-Radziwiłł, K. Affek, M. Łebkowska, Effects of selected nanoparticles on aquatic plant, Desal. Water Treat., 117 (2018) 42–48.
  5. M. Załęska-Radziwiłł, N. Doskocz, Ecotoxicity of zirconium oxide nanoparticles in relation to aquatic invertebrates, Desal. Water Treat., 57 (2016) 1443–1450.
  6. N.C. Mueller, B. Nowack, Exposure modeling of engineered nanoparticles in the environment, Environ. Sci. Technol., 42 (2008) 4447–4453.
  7. F. Gottschalk, T. Sonderer, R.W. Scholz, B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions, Environ. Sci. Technol., 43 (2009) 9216–9222.
  8. M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, A. Kahru, Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 71 (2008) 1308–1316.
  9. R. Zouzelka, P. Cihakova, J. RihovaAmbrozova, J. Rathousky, Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.), Environ. Sci. Pollut. Res., 23 (2016) 8317–8326.
  10. C. Walters, E. Poolb, V. Somerset, Aggregation and dissolution of silver nanoparticles in a laboratory based freshwater microcosm under simulated environmental conditions, Toxicol. Environ. Chem., 95 (2013) 1690–1701.
  11. A. Kahru, H.C. Dubourguier, From ecotoxicology to nanoecotoxicology, J. Toxicol., 269 (2010) 105–119.
  12. M. Sadiq, S. Pakrashi, N. Chandrasekaran, A. Mukherjee, Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp., J. Nanopart. Res., 13 (2011) 3287–3299.
  13. N. Chrzanowska, M. Załęska-Radziwiłł, Impact of selected nanoparticles on higher plants, Int. Issues Eng. Environ. Prot., 2 (2012) 111–122.
  14. Technical Support Document for Water Quality – Based Toxics Control, US Environmental Protection Agency – Office of Water (EN-336) EPA/505/2-90-001 PB 91-127415, 1991.
  15. Commission Directive 93/67/EEC of 20 July 1993, Laying Down the Principles for Assessing the Risk to Humans and the Environment of Notified Substances in Accordance with Council Directive 67/548/EWG, 1993.
  16. T.Y. Sun, F. Gottschalk, K. Hungerbühler, B. Nowack, Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials, Environ. Pollut., 185 (2014) 69–76.
  17. S.K. Brar, V. Mausam, R.D. Tyagi, R.Y. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge – evidence and impacts, Waste Manage., 30 (2008) 504–520.
  18. S. Seshadri, The Chemistry of Nanomaterials: Synthesis, Properties and Aplications, Wiley-VchVerlag GMBH and Co., Weinheim, 2004.
  19. J.A. Rodríguez, M. Fernández-García, Synthesis, Properties, and Applications of Oxide Nanomaterials, John Wiley and Sons, New Jersey, 2008.
  20. M. Załęska-Radziwiłł, N. Doskocz, DNA changes in Pseudomonas putida induced by aluminium oxide nanoparticles using RAPD analysis, Desal. Water Treat., 57 (2015) 1573–1581.
  21. LCK314 Cuvette Test ChZT 15–150 mg/L O2, Hach Lange, Germany.
  22. LCK514 Cuvette Test ChZT 100–2,000 mg/L O2, Hach Lange, Germany.
  23. LCK 339 0.23 – 13.50 mg/L NO3–N-Cuvette Test of Nitrogens, Hach Lange, Germany.
  24. LCK349 Cuvette Test of Phosphorus 0.05–1.5 mg/L PO4–P, Hach Lange, Germany.
  25. Ammonia-Nessler Method 8038, 0.02–2.50 mg/L NH3–N, Hach Lange, Germany.
  26. Method 8507, NitriVer 3 Nitrite, Hach Lange, Germany.
  27. Method HACH 8190/ HACH 8178, Hach Lange, Germany.
  28. Water Quality – Determination of Chloride – Silver Nitrate Titration with Chromate Indicator (Mohr’s Method), PN-ISO ISO 9297:1994, International Organization for Standardization, Geneva, Switzerland, 1989.
  29. APHA/AWWA/WEF, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, USA, 1999.
  30. D.H. Eikelboom, Process Control of Activated Sludge Plants by Microscopic Investigation, IWA Publishing, London, 2000.
  31. C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948) 379–423.
  32. Water Quality – Determination of the Toxic Effect of Water Constituents and Wastewater to Duckweed (Lemna minor) – Duckweed Growth Inhibition Test, PN-EN ISO 20079:2004.
  33. Water Quality – Quantitative Assay of Culturable Micro- Organisms, Determination of the Colony Count by Inoculation in a Nutrient Agar Culture Medium, PN-EN ISO 6222:2004.
  34. L. Góth, A simple method for determination of serum catalase activity and revision of reference range, Clin. Chim. Acta, 196 (1991) 143–151.
  35. L. Kłyszejko-Stefanowicz, Exercises in Biochemistry, Polish Scientific Publishers PWN, Warsaw, 2003.
  36. Water and Sewage – Special Investigations of Sludge – Part 8: Determination of Dehydrogenase Activity in Activated Sludge by Spectrophotometric Method with Triphenyltetrazolium Chloride, PN–C–04616–8, 2008.
  37. Nanoparticles in the Environment Risk Assessment based on Exposure-Modelling, ETH Zurich, Department of Environmental Sciences, Nanotechnology White Paper, United States Environmental Protection Agency, 2007.
  38. A. Wolińska, Z. Stępniewska, Dehydrogenase Activity in the Soil Environment, Dehydrogenases, Rosa Angela Canuto, IntechOpen, 2012, Available at: https://www.intechopen. com/books/dehydrogenases/dehydrogenase-activity-in-thesoil- environment
  39. H.S. Jiang, L. Yin, N.N. Ren, L. Xian, S. Zhao, W. Li, B. Gontero, The effect of chronic silver nanoparticles on aquatic system in microcosms, Environ. Pollut., 223 (2017) 395–402.
  40. D. Kumar, A. Parashar, N. Chandrasekaran, A. Mukherjee, The stability and fate of synthesized zero-valent iron nanoparticles in freshwater microcosm system, 3 Biotech, 7 (2017) 1–9.
  41. V. Vijayaraj, C. Liné, S. Cadarsi, C. Salvagnac, D. Baqué, A. Elger, M. Barret, F. Mouchet, C. Larue, Transfer and ecotoxicity of titanium dioxide nanoparticles in terrestrial and aquatic Ecosystems: a microcosm study, Environ. Sci. Technol., 52 (2018) 12757–12764.
  42. S. George, S. Lin, Z. Ji, C.R. Thomas, L. Li, M. Mecklenburg, H. Meng, X. Wang, H. Zhang, T. Xia, J.N. Hohman, S. Lin, J.I. Zink, P.S. Weiss, A.E. Nel, Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embyos, ACS Nano, 6 (2012) 3745–3759.
  43. N. Doskocz, K. Affek, M. Załęska-Radziwiłł, Effect of aluminium oxide nanoparticles on the enzymatic activity on microorganisms of activated sludge, E3S Web Conf., 44 (2018) 1–9, doi: 10.1051/e3sconf/20184400033.
  44. M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals, Interdiscip. Toxicol., 7 (2014) 60–72.
  45. C. Andreini, I. Bertini, G. Cavallaro, G.L. Holliday, J.M. Thornton, Metal ions in biological catalysis: from enzyme databases to general principles, J. Biol. Inorg. Chem., 13 (2008) 1205–1218.
  46. S. Kausar, F. Wang, H. Cui, The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases, Cells, 7 (2018) 274.
  47. B. Campos, C. Rivetti, P. Rosenkranz, J.M. Navas, C. Barata, Effects of nanoparticles of TiO2 on food depletion and lifehistory responses of Daphnia magna, Aquat. Toxicol., 130–131 (2013) 174–183.
  48. F. Mouchet, P. Landois, E. Sarremejean, G. Bernard, P. Puech, E. Pinelli, E. Flahaut, L. Gauthier, Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis, Aquat. Toxicol., 87 (2008) 127–137.
  49. S.E. Robinson, N.A. Capper, S.J. Klaine, The effects of continuous and pulsed exposures of suspended clay on the survival, growth, and reproduction of Daphnia magna, Environ. Toxicol. Chem., 29 (2010) 168–175.
  50. Y. Xue, Q. Chen, T. Ding, J. Sun, SiO2 nanoparticle-induced impairment of mitochondrial energy metabolism in hepatocytes directly and through a Kupffer cell-mediated pathway in vitro, Int. J. Nanomed., 9 (2014) 2891–2903.
  51. Resolution European Parliament on Regulatory Aspects of Nanomaterials (2008/2208(INI)), European Parliament, Brussels, Belgium, 2009.