References

  1. Y.Y. Liu, W. Jin, Y.P. Zhao, G.S. Zhang, W. Zhang, Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions, Appl. Catal., B, 206 (2017) 642–652.
  2. J.B. Pang, F.L. Fu, Z.C. Ding, J.W. Lu, N. Li, B. Tang, Adsorption behaviors of methylene blue from aqueous solution on mesoporous birnessite, J. Taiwan Inst. Chem. Eng., 77 (2017) 168–176.
  3. C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl. Catal., B, 87 (2009) 105–145.
  4. N. Inchaurrondo, C.P. Ramos, G. Žerjav, J. Font, A. Pintar, P. Haure, Modified diatomites for Fenton-like oxidation of phenol, Microporous Mesoporous Mater., 239 (2017) 396–408.
  5. J.B. Pang, F.L. Fu, W.B. Li, L.J. Zhu, B. Tang, Fe-Mn binary oxide decorated diatomite for rapid decolorization of methylene blue with H2O2, Appl. Surf. Sci., 478 (2019) 54–61.
  6. K. Rout, A. Dash, M. Mohapatra, S. Anand, Manganese doped goethite: structural, optical and adsorption properties, J. Environ. Chem. Eng., 2 (2014) 434–443.
  7. A.N. Soon, B.H. Hameed, Degradation of Acid Blue 29 in visible light radiation using iron modified mesoporous silica as heterogeneous photo-Fenton catalyst, Appl. Catal., A, 450 (2013) 96–105.
  8. M. Munoz, Z.M. de Pedro, N. Menendez, J.A. Casas, J.J. Rodriguez, A ferromagnetic γ-alumina-supported iron catalyst for CWPO. Application to chlorophenols, Appl. Catal., B, 136 (2013) 218–224.
  9. T.D. Nguyen, N.H. Phan, M.H. Do, K.T. Ngo, Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: fabrication, characterization and heterogeneous Fenton oxidation of methyl orange, J. Hazard. Mater., 185 (2011) 653–661.
  10. A.A. Tireli, I. do Rosário Guimarães, J.C. de Souza Terra, R.R. da Silva, M.C. Guerreiro, Fenton-like processes and adsorption using iron oxide-pillared clay with magnetic properties for organic compound mitigation, Environ. Sci. Pollut. Res., 22 (2015) 870–881.
  11. F. Magalhães, M.C. Pereira, S.E.C. Botrel, J.D. Fabris, W.A. Macedo, R. Mendonça, R.M. Lago, L.C.A. Oliveira, Cr-containing magnetites Fe3−xCrxO4: the role of Cr3+ and Fe2+ on the stability and reactivity towards H2O2 reactions, Appl. Catal., A, 332 (2007) 115–123.
  12. R.C.C. Costa, M.F.F. Lelis, L.C.A. Oliveira, J.D. Fabris, J.D. Ardisson, R.R.V.A. Rios, C.N. Silva, R.M. Lago, Novel active heterogeneous Fenton system based on Fe3−xMxO4 (Fe, Co, Mn, Ni): the role of M2+ species on the reactivity towards H2O2 reactions, J. Hazard. Mater., 129 (2006) 171–178.
  13. G.L. Wei, X.L. Liang, Z.S. He, Y.S. Liao, Z.Y. Xie, P. Liu, S.C. Ji, H.P. He, D.Q. Li, J. Zhang, Heterogeneous activation of oxone by substituted magnetites Fe3−xMxO4 (Cr, Mn, Co, Ni) for degradation of Acid Orange II at neutral pH, J. Mol. Catal. A: Chem., 398 (2015) 86–94.
  14. M. Sabbaghan, F. Adhami, M. Aminnezhad, Mesoporous jarosite/MnO2 and goethite/MnO2 nanocomposites synthesis and application for oxidation of methylene blue, J. Struct. Chem., 59 (2018) 463–473.
  15. R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, John Wiley & Sons, 2003.
  16. H.X. Yang, R. Lu, R.T. Downs, G. Costin, Goethite, α-FeO(OH), from single-crystal data, Acta Crystallogr., Sect. E: Struct. Rep. Online, 62 (2006) i250–i252.
  17. U.G. Gasser, R. Nüesch, M.J. Singer, E. Jeanroy, Distribution of manganese in synthetic goethite, Clay Miner., 34 (1999) 291–299.
  18. U. Schwertmann, U. Gasser, H. Sticher, Chromium-for-iron substitution in synthetic goethites, Geochim. Cosmochim. Acta, 53 (1989) 1293–1297.
  19. C. Diaz, N.R. Furet, V.I. Nikolaev, V.S. Rusakov, M.C. Cordeiro, Mössbauer effect study of Co, Ni, Mn, and Al bearing goethites, Hyperfine Interact., 46 (1989) 689–693.
  20. D.G. Lewis, U. Schwertmann, The influence of Al on iron oxides. Part III. Preparation of Al goethites in M KOH, Clay Miner., 14 (1979) 115–126.
  21. C. Zhang, Y. Ou, W.-X. Lei, L.-S. Wan, J. Ji, Z.-K. Xu, CuSO4/H2O2‐induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability, Angew. Chem. Int. Ed., 55 (2016) 3054–3057.
  22. D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibanez, I. Di Somma, Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach, Appl. Catal., B, 170 (2015) 90–123.
  23. J. Liu, C.C. Dong, Y.X. Deng, J.H. Ji, S.Y. Bao, C.R. Chen, B. Shen, J.L. Zhang, M.Y. Xing, Molybdenum sulfide co-catalytic Fenton reaction for rapid and efficient inactivation of Escherichia coli, Water Res., 145 (2018) 312–320.
  24. R. Leyva-Ramos, L.A. Bernal-Jacome, I. Acosta-Rodriguez, Adsorption of cadmium(II) from aqueous solution on natural and oxidized corncob, Sep. Purif. Technol., 45 (2005) 41–49.
  25. C. Moreno-Castilla, M.V. López-Ramón, F. Carrasco-Marı́n, Changes in surface chemistry of activated carbons by wet oxidation, Carbon, 38 (2000) 1995–2001.
  26. F. Salimi, H. Rahimi, C. Karami, Removal of methylene blue from water solution by modified nanogoethite by Cu, Desal. Water Treat., 137 (2019) 334–344.
  27. K. Parida, J. Das, Studies on ferric oxide hydroxides: II. Structural properties of goethite samples (α-FeOOH) prepared by homogeneous precipitation from Fe(NO3)3 solution in the presence of sulfate ions, J. Colloid Interface Sci., 178 (1996) 586–593.
  28. M. Ristić, E. De Grave, S. Musić, S. Popović, Z. Orehovec, Transformation of low crystalline ferrihydrite to α-Fe2O3 in the solid state, J. Mol. Struct., 834 (2007) 454–460.
  29. M.Y. Xing, W.J. Xu, C.C. Dong, Y.C. Bai, J.B. Zeng, Y. Zhou, J.L. Zhang, Y.D. Yin, Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes, Chem, 4 (2018) 1359–1372.
  30. K. Li, Y.Q. Zhao, C.S. Song, X.W. Guo, Magnetic ordered mesoporous Fe3O4/CeO2 composites with synergy of adsorption and Fenton catalysis, Appl. Surf. Sci., 425 (2017) 526–534.
  31. H.A. Bicalho, J.L. Lopez, I. Binatti, P.F.R. Batista, J.D. Ardisson, R.R. Resende, E. Lorençon, Facile synthesis of highly dispersed Fe(II)-doped g-C3N4 and its application in Fenton-like catalysis, Mol. Catal., 435 (2017) 156–165.