References

  1. V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices – a review, J. Environ. Manage., 92 (2011) 2304–2347.
  2. S. Bajpai, N. Chand, M. Mahendra, The adsorptive removal of a cationic drug from aqueous solution using poly(methacrylic acid) hydrogels, Water SA, 40 (2014) 49–56.
  3. M. Magureanu, D. Piroi, N. Mandache, V. David, A. Medvedovici, C. Bradu, V. Parvulescu, Degradation of antibiotics in water by non-thermal plasma treatment, Water Res., 4 (2011) 3407–3416.
  4. C. Gagnon, A. Lajeunesse, P. Cejka, F. Gagne, R. Hausler, Degradation of selected acidic and neutral pharmaceutical products in a primary-treated wastewater by disinfection processes, Ozone Sci. Eng., 30 (2008) 387–392.
  5. N. Olama, M. Dehghani, M. Malakootian, The removal of amoxicillin from aquatic solutions using the TiO2/UV-C nanophotocatalytic method doped with trivalent iron, Appl. Water Sci., 8 (2018) 97.
  6. K. Kümmerer, Antibiotics in the aquatic environment – a review– part I, Chemosphere, 75 (2009) 417–434.
  7. T.J. Al-Musawi, F. Brouers, M. Zarrabi, Kinetic modeling of antibiotic adsorption onto different nanomaterials using the Brouers–Sotolongo fractal equation, Environ. Sci. Pollut. Res. Int., 24 (2017) 4048–4057.
  8. E.Y. Klein, T.P. Van Boeckel, E.M. Martinez, S. Pant, S. Gandra, S.A. Levin, H. Goossens, R. Laxminarayan, Global increase and geographic convergence in antibiotic consumption between 2000 and 2015, Proc. Natl. Acad. Sci. U.S.A., 115 (2018) E3463–E3470.
  9. M. Dehghani, S. Nasseri, M. Ahmadi, M.R. Samaei, A. Anushiravani, Removal of penicillin G from aqueous phase by Fe3+-TiO2/UV-A process, J. Environ. Health Sci. Eng., 12 (2014) 56.
  10. S. Chavoshan, M. Khodadadi, N. Nasseh, A.H. Panahi, A. Hosseinnejad, Investigating the efficiency of single-walled and multi-walled carbon nanotubes in removal of penicillin G from aqueous solutions, Environ. Health Eng. Manage., 5 (2018) 187–196.
  11. T.P. Van Boeckel, S. Gandra, A. Ashok, Q. Caudron, B.T. Grenfell, S.A. Levin, R. Laxminarayan, Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data, Lancet Infect. Dis., 14 (2014) 742–750.
  12. J. Zhang, D. Fu, Y. Xu, C. Liu, Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 as photocatalyist by response surface methodology, J. Environ. Sci., 22 (2010) 1281–1289.
  13. A. Kurt, B.K. Mert, N. Özengin, Ö. Sivrioğlu, T. Yonar, Treatment of Antibiotics in Wastewater using Advanced Oxidation Processes (AOPs), Physico-Chemical Wastewater Treatment and Resource Recovery, IntechOpen, 2017. Available at: https:// www.intechopen.com/books/physico-chemical-wastewatertreatment- and-resource-recovery/treatment-of-antibiotics-inwastewater- using-advanced-oxidation-processes-aops-
  14. I. Arslan-Alaton, S. Dogruel, Pre-treatment of penicillin formulation effluent by advanced oxidation processes, J. Hazard. Mater., 112 (2004) 105–113.
  15. S. Esplugas, D.M. Bila, L.G.T. Krause, M. Dezotti, Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents, J. Hazard. Mater., 149 (2007) 631–642.
  16. J. Rivera-Utrilla, G. Prados-Joya, M. Sánchez-Polo, M. Ferro-García, I. Bautista-Toledo, Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon, J. Hazard. Mater., 170 (2009) 298–305.
  17. S. Norzaee, M. Taghavi, B. Djahed, F.K. Mostafapour, Degradation of penicillin G by heat activated persulfate in aqueous solution, J. Environ. Manage., 215 (2018) 316–323.
  18. M.M. McConnell, L.T. Hansen, R.C. Jamieson, K.D. Neudorf, C.K. Yost, A. Tong, Removal of antibiotic resistance genes in two tertiary level municipal wastewater treatment plants, Sci. Total Environ., 643 (2018) 292–300.
  19. J. Jeong, W. Song, W.J. Cooper, J. Jung, J. Greaves, Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes, Chemosphere, 78 (2010) 533–540.
  20. Y. Ji, Y. Shi, W. Dong, X. Wen, M. Jiang, J. Lu, Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution, Int. J. Chem. Eng., 298 (2016) 225–233.
  21. X. Wang, J. Jia, Y. Wang, Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline, Int. J. Chem. Eng., 315 (2017) 274–282.
  22. A. Nezamzadeh-Ejhieh, A. Shirzadi, Enhancement of the photocatalytic activity of ferrous oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline, Chemosphere, 107 (2014) 136–144.
  23. L.S. Porubcan, C.J. Serna, J.L. White, S.L. Hem, Mechanism of adsorption of clindamycin and tetracycline by montmorillonite, J. Pharm. Sci., 67 (1978) 1081–1087.
  24. N. Oturan, J. Wu, H. Zhang, V.K. Sharma, M.A. Oturan, Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials, Appl. Catal., B, 140 (2013) 92–97.
  25. P. Liu, H. Zhang, Y. Feng, F. Yang, J. Zhang, Removal of trace antibiotics from wastewater: a systematic study of nanofiltration combined with ozone-based advanced oxidation processes, Int. J. Chem. Eng., 240 (2014) 211–220.
  26. E.J. Rosenfeldt, K.G. Linden, Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes, Environ. Sci. Technol., 38 (2004) 5476–5483.
  27. W. Song, W.J. Cooper, S.P. Mezyk, J. Greaves, B.M. Peake, Free radical destruction of β-blockers in aqueous solution, Environ. Sci. Technol., 42 (2008) 1256–1261.
  28. I. Kim, H. Tanaka, Photodegradation characteristics of PPCPs in water with UV treatment, Environ. Int., 35 (2009) 793–802.
  29. I. Kim, N. Yamashita, H. Tanaka, Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments, Chemosphere, 77 (2009) 518–525.
  30. Z. Zhu, Z. Lu, D. Wang, X. Tang, Y. Yan, W. Shi, Y. Wang, N. Gao, X. Yao, H. Dong, Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity, Appl. Catal., B, 182 (2016) 115–122.
  31. E. Bazrafshan, T.J. Al-Musawi, M.F. Silva, A.H. Panahi, M. Havangi, F.K. Mostafapur, Photocatalytic degradation of catechol using ZnO nanoparticles as catalyst: optimizing the experimental parameters using the Box–Behnken statistical methodology and kinetic studies, Microchem. J., 147 (2019) 643–653.
  32. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  33. Y. Nosaka, T. Daimon, A.Y. Nosaka, Y. Murakami, Singlet oxygen formation in photocatalytic TiO2 aqueous suspension, Phys. Chem. Chem. Phys., 6 (2004) 2917–2918.
  34. Y. Nosaka, S. Komori, K. Yawata, T. Hirakawa, A.Y. Nosaka, Photocatalytic OH radical formation in TiO2 aqueous suspension studied by several detection methods, Phys. Chem. Chem. Phys., 5 (2003) 4731–4735.
  35. A. Jańczyk, E. Krakowska, G. Stochel, W. Macyk, Singlet oxygen photogeneration at surface modified titanium dioxide, J. Am. Chem. Soc., 128 (2006) 15574–15575.
  36. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol., C, 13 (2012) 169–189.
  37. G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei, H. Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants, Carbon, 49 (2011) 2693–2701.
  38. A. Mirzaei, L. Yerushalmi, Z. Chen, F. Haghighat, Photocatalytic degradation of sulfamethoxazole by hierarchical magnetic ZnO@g-C3N4: RSM optimization, kinetic study, reaction pathway and toxicity evaluation, J. Hazard. Mater., 359 (2018) 516–526.
  39. E. Korina, O. Stoilova, N. Manolova, I. Rashkov, Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment, J. Environ. Chem. Eng., 6 (2018) 2075–2084.
  40. M. Khodadadi, M. Ehrampoush, M. Ghaneian, A. Allahresani, A. Mahvi, Synthesis and characterizations of FeNi3@ SiO2@ TiO2 nanocomposite and its application in photo-catalytic degradation of tetracycline in simulated wastewater, J. Mol. Liq., 255 (2018) 224–232.
  41. M. Khodadadi, M. Ehrampoush, A. Allahresani, M. Ghanian, M. Lotfi, A. Mahvi, FeNi3@SiO2 magnetic nanocomposite as a highly efficient Fenton-like catalyst for humic acid adsorption and degradation in neutral environments, Desal. Water Treat., 118 (2018) 258–267.
  42. J. Tan, X. Wang, W. Hou, X. Zhang, L. Liu, J. Ye, D. Wang, Fabrication of Fe3O4@graphene/TiO2 nanohybrid with enhanced photocatalytic activity for isopropanol degradation, J. Alloys Compd., 792 (2019) 918–927.
  43. S. Xuan, W. Jiang, X. Gong, Y. Hu, Z. Chen, Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity, J. Phys. Chem. C, 113 (2008) 553–558.
  44. N. Nasseh, L. Taghavi, B. Barikbin, M.A. Nasseri, Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater, J. Cleaner Prod., 179 (2018) 42–54.
  45. F. Brouers, T.J. Al-Musawi, Brouers–Sotolongo fractal kinetics versus fractional derivative kinetics: a new strategy to analyze the pollutants sorption kinetics in porous materials, J. Hazard. Mater., 350 (2018) 162–168.
  46. X. Xu, F. Ji, Z. Fan, L. He, Degradation of glyphosate in soil photocatalyzed by Fe3O4/SiO2/TiO2 under solar light, Int. J. Environ. Res. Public Health, 8 (2011) 1258–1270.
  47. C. Yu, D. Cai, K. Yang, C.Y. Jimmy, Y. Zhou, C. Fan, Sol–gel derived S, I-codoped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity, J. Phys. Chem. Solids, 71 (2010) 1337–1343.
  48. R. Wang, X. Wang, X. Xi, R. Hu, G. Jiang, Preparation and photocatalytic activity of magnetic Fe3O4/SiO2/TiO2 composites, Adv. Mater. Sci. Eng., 2012 (2012) 1–8, doi: 10.1155/2012/409379.
  49. H. Khojasteh, M. Salavati-Niasari, M.-P. Mazhari, M. Hamadanian, Preparation and characterization of Fe3O4@SiO2@ TiO2@Pd and Fe3O4@ SiO2@TiO2@Pd–Ag nanocomposites and their utilization in enhanced degradation systems and rapid magnetic separation, RSC Adv., 6 (2016) 78043–78052.
  50. T.J. Al-Musawi, H. Kamani, E. Bazrafshan, A.H. Panahi, M.F. Silva, G. Abi, Optimization the effects of physicochemical parameters on the degradation of cephalexin in sono-Fenton reactor by using Box–Behnken response surface methodology, Catal. Lett., 149 (2019) 1186–1196.
  51. A.D. Shiraz, A. Takdastan, S.M. Borghei, Photo-Fenton like degradation of catechol using persulfate activated by UV and ferrous ions: influencing operational parameters and feasibility studies, J. Mol. Liq., 249 (2018) 463–469.
  52. P.R. Shukla, S. Wang, H.M. Ang, M.O. Tadé, Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light, Sep. Purif. Technol., 70 (2010) 338–344.
  53. G. Safari, M. Hoseini, M. Seyedsalehi, H. Kamani, J. Jaafari, A. Mahvi, Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution, Int. J. Environ. Sci. Technol., 12 (2015) 603–616.
  54. F. Saadati, N. Keramati, M.M. Ghazi, Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: a review, Crit. Rev. Environ. Sci. Technol., 46 (2016) 757–782.
  55. M. Ahmadi, H.R. Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, S. Jorfi, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite, J. Environ. Manage., 186 (2017) 55–63.
  56. H.U. Rasheed, X. Lv, S. Zhang, W. Wei, J. Xie, Ternary MIL-100 (Fe)@Fe3O4/CA magnetic nanophotocatalysts (MNPCs): magnetically separable and Fenton-like degradation of tetracycline hydrochloride, Adv. Powder Technol., 29 (2018) 3305–3314.
  57. S. Ahmed, M. Rasul, R. Brown, M. Hashib, Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review, J. Environ. Manage., 92 (2011) 311–330.
  58. E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis, Desalination, 252 (2010) 46–52.
  59. U.I. Gaya, A.H. Abdullah, Z. Zainal, M.Z. Hussein, Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: intermediates, influence of dosage and inorganic anions, J. Hazard. Mater., 168 (2009) 57–63.
  60. I.R. Bautitz, R.F.P. Nogueira, Degradation of tetracycline by photo-Fenton process—solar irradiation and matrix effects, J. Photochem. Photobiol., A, 187 (2007) 33–39.