References

  1. O. Wichterle, D. Lim, Hydrophilic gels for biological use, Nature, 185 (1960) 117–118.
  2. J.D. Ferry, Viscoelastic Properties of Polymers, John Wiley & Sons, New York, 1980.
  3. G. Pass, G. Phillips, D. Wedlock, Interaction of univalent and divalent cations with carrageenans in aqueous solution, Macromolecules, 10 (1977) 197–201.
  4. J.M. Rosiak, F. Yoshii, Hydrogels and their medical applications, Nucl. Instrum. Methods Phys. Res., Sect. B, 151 (1999) 56–64.
  5. Q. Zhu, Z. Li, Hydrogel-supported nanosized hydrous manganese dioxide: synthesis, characterization, and adsorption behavior study for Pb2+, Cu2+, Cd2+ and Ni2+ removal from water, Chem. Eng. J., 281 (2015) 69–80.
  6. T.E. Dudu, M. Sahiner, D. Alpaslan, S. Demirci, N. Aktas, Removal of As(V), Cr(III) and Cr(VI) from aqueous environments by poly (acrylonitril-co-acrylamidopropyltrimethyl ammonium chloride)-based hydrogels, J. Environ. Manage., 161 (2015) 243–251.
  7. R. Hua, Z. Li, Sulfhydryl functionalized hydrogel with magnetism: synthesis, characterization, and adsorption behavior study for heavy metal removal, Chem. Eng. J., 249 (2014) 189–200.
  8. P. Souda, L. Sreejith, Magnetic hydrogel for better adsorption of heavy metals from aqueous solutions, J. Environ. Chem. Eng., 3 (2015) 1882–1891.
  9. T. Nguyen, H. Ngo, W. Guo, J. Zhang, S. Liang, Q. Yue, Q. Li, T. Nguyen, Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater, Bioresour. Technol., 148 (2013) 574–585.
  10. L. Yan, Y. Huang, J. Cui, C. Jing, Simultaneous As(III) and Cd removal from copper smelting wastewater using granular TiO2 columns, Water Res., 68 (2015) 572–579.
  11. J. Duan, J. Tan, J. Hao, F. Chai, Size distribution, characteristics and sources of heavy metals in haze episod in Beijing, J. Environ. Sci., 26 (2014) 189–196.
  12. T. Liu, X. Yang, Z.-L. Wang, X. Yan, Enhanced chitosan beadssupported Fe0-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers, Water Res., 47 (2013) 6691–6700.
  13. H. Zhang, Y. Tian, L. Wang, L. Zhang, L. Dai, Ecophysiological characteristics and biogas production of cadmium-contaminated crops, Bioresour. Technol., 146 (2013) 628–636.
  14. K. Khan, Y. Lu, H. Khan, S. Zakir, S. Khan, A.A. Khan, L. Wei, T. Wang, Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan, J. Environ. Sci., 25 (2013) 2003–2013.
  15. A.C. Davis, P. Wu, X. Zhang, X. Hou, B.T. Jones, Determination of cadmium in biological samples, Appl. Spectrosc. Rev., 41 (2006) 35–75.
  16. M. Tellez-Plaza, A. Navas-Acien, C.M. Crainiceanu, E. Guallar, Cadmium exposure and hypertension in the 1999–2004 National Health and Nutrition Examination Survey (NHANES), Environ. Health Perspect., 116 (2008) 51–56.
  17. D. Sud, G. Mahajan, M. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–a review, Bioresour. Technol., 99 (2008) 6017–6027.
  18. S.W. Won, P. Kotte, W. Wei, A. Lim, Y.-S. Yun, Biosorbents for recovery of precious metals, Bioresour. Technol., 160 (2014) 203–212.
  19. L.V.A. Gurgel, O.K. Junior, R.P. de Freitas Gil, L.F. Gil, Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride, Bioresour. Technol., 99 (2008) 3077–3083.
  20. S. Prapagdee, S. Piyatiratitivorakul, A. Petsom, Activation of cassava stem biochar by physico-chemical method for stimulating cadmium removal efficiency from aqueous solution, EnvironmentAsia, 7 (2014) 60–69.
  21. X. Yu, S. Tong, M. Ge, L. Wu, J. Zuo, C. Cao, W. Song, Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals, J. Environ. Sci., 25 (2013) 933–943.
  22. M.A. Hussain, T.F. Liebert, Heinze, Alternative Routes of Polysaccharide Acylation: Synthesis, Structural Analysis, Properties, Th. Polymer News, 29 (2004) 14–17. Available at: https://pdfs.semanticscholar.org/4fad/8c35e2df74ba9b1416a 9228fc3e0e04dec9f.pdf.
  23. J.C. de Melo, E.C. da Silva Filho, S.A. Santana, C. Airoldi, Maleic anhydride incorporated onto cellulose and thermodynamics of cation-exchange process at the solid/liquid interface, Colloids Surf., A, 346 (2009) 138–145.
  24. M.M. Zohourian, K. Kabiri, Superabsorbent polymer materials: a review, Iran. Polym. J., 17 (2008) 451–447.
  25. Z.Z. Summers, M. Aulton, M. Rubinstein, Pharmaceutics: The Science of Dosage Form Design, J. Am. Pharm. Inc., New York, 2007, pp. 70–98.
  26. A. Suo, J. Qian, Y. Yao, W. Zhang, Synthesis and properties of carboxymethyl cellulose-graft-poly (acrylic acid-co-acrylamide) as a novel cellulose‐based superabsorbent, J. Appl. Polym., 103 (2007) 1382–1388.
  27. S.A. Weerawarna, Method for Making Biodegradable Superabsorbent Particles, Google Patents, 2011.
  28. F. Esposito, M.A. Del Nobile, G. Mensitieri, L. Nicolais, Water sorption in cellulose-based hydrogels, J. Appl. Polym. Sci., 60 (1996) 2403–2407.
  29. M.E. Aulton, Pharmaceutics: The Science of Dosage Form Design, Churchill Livingstone, Philadelphia, 2002, pp. 397–439.
  30. S. Ring, Some studies on starch gelation, Starch/Stärke, 37 (1985) 80–83.
  31. J. Peerapattana, P. Phuvarit, V. Srijesdaruk, D. Preechagoon, A. Tattawasart, Pregelatinized glutinous rice starch as a sustained release agent for tablet preparations, Carbohydr. Polym., 80 (2010) 453–459.
  32. E. Diez-Pena, I. Quijada-Garrido, J. Barrales-Rienda, On the water swelling behaviour of poly(N-isopropylacrylamide)[P (N-iPAAm)], poly(methacrylic acid)[P (MAA)], their random copolymers and sequential interpenetrating polymer networks (IPNs), Polymers, 43 (2002) 4341–4348.
  33. M.K. Krušić, J. Filipović, Copolymer hydrogels based on N-isopropylacrylamide and itaconic acid, Polymer, 47 (2006) 148–155.
  34. Ν. Peppas, B. Barr-Howell, Effect of Drug Loading Method and Drug Physicochemical Properties on the Materials, Hydrogels in Medicine and Pharmacy, Vol. 1, CRC Press, Boca Raton, FL, USA, 1986, pp. 27–56.
  35. S. Ghasemi, M. Mousavi, M. Shamsipur, H. Karami, Sonochemical-assisted synthesis of nano-structured lead dioxide, Ultrason. Sonochem., 15 (2008) 448–455.
  36. C. Liu, R. Bai, Q. San Ly, Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms, Water Res., 42 (2008) 1511–1522.