References
- N. Jaafarzadeh, F. Ghanbari, M. Ahmadi, Catalytic degradation
of 2,4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe2O3
activated peroxymonosulfate: influential factors and
mechanism determination, Chemosphere, 169 (2017) 568–576.
- Y. Wang, C. Wu, X. Wang, S. Zhou, The role of humic
substances in the anaerobic reductive dechlorination of
2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain
CY01, J. Hazard. Mater., 164 (2009) 941–947.
- Y. Tang, S. Luo, Y. Teng, C. Liu, X. Xu, X. Zhang, L. Chen,
Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid
from water using Ag/reduced graphene oxide co-decorated
TiO2 nanotube arrays, J. Hazard. Mater., 241–242 (2012)
323–330.
- Statistical Centre of Iran, Agricultural Statistic Report 1391,
Agricultural Ministry, Tehran, Iran, 2012.
- E.R. Bandala, M.A. Peláez, D.D. Dionysiou, S. Gelover, J. Garcia,
D. Macías, Degradation of 2,4-dichlorophenoxyacetic acid
(2,4-D) using cobalt-peroxymonosulfate in Fenton-like process,
J. Photochem. Photobiol., A, 186 (2007) 357–363.
- A. Boivin, S. Amellal, M. Schiavon, M.T. Van Genuchten,
2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation
dynamics in three agricultural soils, Environ. Pollut.,
138 (2005) 92–99.
- N. Jaafarzadeh, F. Ghanbari, M. Ahmadi, Efficient degradation
of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/
magnetic copper ferrite nanoparticles/ozone: a novel combination
of advanced oxidation processes, Chem. Eng. J.,
320 (2017) 436–447.
- M.A. Lemus, T. López, S. Recillas, D.M. Frías, M. Montes,
J.J. Delgado, M.A. Centeno, J.A. Odriozola, Photocatalytic
degradation of 2,4-dichlorophenoxyacetic acid using nanocrystalline
cryptomelane composite catalysts, J. Mol. Catal. A:
Chem., 281 (2008) 107–112.
- Y. Xi, M. Mallavarapu, R. Naidu, Adsorption of the herbicide
2,4-D on organo-palygorskite, Appl. Clay Sci., 49 (2010) 255–261.
- E.I. Seck, J.M. Doña-Rodríguez, C. Fernández-Rodríguez,
O.M. González-Díaz, J. Araña, J. Pérez-Peña, Photocatalytic
removal of 2,4-dichlorophenoxyacetic acid by using sol-gel
synthesized nanocrystalline and commercial TiO2: Operational
parameters optimization and toxicity studies, Appl. Catal., B,
125 (2012) 28–34.
- WHO, Guidelines for Drinking-Water Quality, Vol. 1, Recommendations,
3rd ed., World Health Organization, Geneva,
2004.
- C.Y. Kwan, W. Chu, A study of the reaction mechanisms of
the degradation of 2,4-dichlorophenoxyacetic acid by oxalatemediated
photooxidation, Water Res., 38 (2004) 4213–4221.
- S.C. Lee, N. Hasan, H.O. Lintang, M. Shamsuddin, L. Yuliati,
Photocatalytic removal of 2,4-dichlorophenoxyacetic acid
herbicide on copper oxide/titanium dioxide prepared by
co-precipitation method, IOP Conf. Ser.: Mater. Sci. Eng.,
107 (2016) 012012, doi: 10.1088/1757-899x/107/1/012012.
- A.M. Bello-Ramírez, B.Y. Carreón-Garabito, A.A. Nava-Ocampo, A theoretical approach to the mechanism of biological
oxidation of organophosphorus pesticides, Toxicology,
149 (2000) 63–68.
- S.P. Kamble, S.P. Deosarkar, S.B. Sawant, J.A. Moulijn, V.G.
Pangarkar, Photocatalytic degradation of 2,4-dichlorophenoxyacetic
acid using concentrated solar radiation: batch
and continuous operation, Ind. Eng. Chem. Res., 43 (2004)
8178–8187.
- E. Bazrafshan, F. Kord Mostafapour, H. Faridi, M. Farzadkia,
S. Sargazi, A. Sohrabi, Removal of 2,4-dichlorophenoxyacetic
acid (2,4-D) from aqueous environments using single-walled
carbon nanotubes, Health Scope, 2 (2015) 39–46.
- M. Naushad, G. Sharma, Z.A. Alothman, Photodegradation
of toxic dye using gum Arabic-crosslinked-poly(acrylamide)/Ni(OH)2/FeOOH nanocomposites hydrogel, J. Cleaner Prod.,
241 (2019) 118263, doi: 10.1016/j.jclepro.2019.118263.
- H. El Harmoudi, L. El Gaini, E. Daoudi, M. Rhazi, Y. Boughaleb,
M.A. El Mhammedi, A. Migalska-Zalas, M. Bakasse, Removal
of 2,4-D from aqueous solutions by adsorption processes
using two biopolymers: chitin and chitosan and their optical
properties, Opt. Mater., 36 (2014) 1471–1477.
- B.K. Jung, Z. Hasan, S.H. Jhung, Adsorptive removal of
2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metalorganic
framework, Chem. Eng. J., 234 (2013) 99–105.
- S.K. Deokar, S.A. Mandavgane, B.D. Kulkarni, Adsorptive
removal of 2,4-dichlorophenoxyacetic acid from aqueous
solution using bagasse fly ash as adsorbent in batch and
packed-bed techniques, Clean Technol. Environ. Policy,
18 (2016) 1971–1983.
- A. Kumar, G. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A.
Ghfar, C. Guo, F.J. Stadler, Biochar-templated g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for visible and solar assisted photodegradation
of paraquat, nitrophenol reduction and CO2
conversion, Chem. Eng. J., 339 (2018) 393–410.
- A. Kumar, G. Sharma, A.H. Al-Muhtaseb, M. Naushad,
A.A. Ghfar, F.J. Stadler, Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered
degradation of sulfamethoxazole from aqueous environment,
Chem. Eng. J., 334 (2018) 462–478.
- A. Kumar, Shalini, G. Sharma, M. Naushad, A. Kumar, S. Kalia,
C. Guo, G.T. Mola, Facile hetero-assembly of superparamagnetic
Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of
methyl paraben and pesticide removal from soil, J. Photochem.
Photobiol., A, 337 (2017) 118–131.
- T. Tatarchuk, N. Paliychuk, R.B. Bitra, A. Shyichuk, M.U. Naushad,
I. Mironyuk, D. Ziółkowska, Adsorptive removal of toxic
methylene blue and acid orange 7 dyes from aqueous medium
using cobalt-zinc ferrite nanoadsorbents, Desal. Water Treat.,
150 (2019) 374–385.
- S. Liu, M. Lim, R. Amal, TiO2-coated natural zeolite: rapid humic
acid adsorption and effective photocatalytic regeneration,
Chem. Eng. Sci., 105 (2014) 46–52.
- T. Tatarchuk, A. Shyichuk, I. Mironyuk, M. Naushad, A review
on removal of uranium(VI) ions using titanium dioxide
based sorbents, J. Mol. Liq., 293 (2019) 111563, doi: 10.1016/j.
molliq.2019.111563.
- B. Wang, G. Zhang, Z. Sun, S. Zheng, Synthesis of natural porous
minerals supported TiO2 nanoparticles and their photocatalytic
performance towards Rhodamine B degradation, Powder
Technol., 262 (2014) 1–8.
- N. Khalfaoui-Boutoumi, H. Boutoumi, H. Khalaf, B. David,
Synthesis and characterization of TiO2–montmorillonite/polythiophene-SDS nanocomposites: application in the sonophotocatalytic
degradation of rhodamine 6G, Appl. Clay Sci.,
80–81 (2013) 56–62.
- J. Castañeda-Contreras, V.F. Marañón-Ruiz, R. Chiu-Zárate,
H. Pérez-Ladrón de Guevara, R. Rodriguez, C. Michel-Uribe,
Photocatalytic activity of erbium-doped TiO2 nanoparticles
immobilized in macro-porous silica films, Mater. Res. Bull.,
47 (2012) 290–295.
- K. Mamulová Kutláková, J. Tokarský, P. Kovář, S. Vojtěšková,
A. Kovářová, B. Smetana, J. Kukutschová, P. Čapková,
V. Matějka, Preparation and characterization of photoactive
composite kaolinite/TiO2, J. Hazard. Mater., 188 (2011) 212–220.
- H. Ichiura, T. Kitaoka, H. Tanaka, Removal of indoor pollutants
under UV irradiation by a composite TiO2–zeolite sheet
prepared using a papermaking technique, Chemosphere,
50 (2003) 79–83.
- A. Taheri Najafabadi, F. Taghipour, Physicochemical impact of
zeolites as the support for photocatalytic hydrogen production
using solar-activated TiO2-based nanoparticles, Energy
Convers. Manage., 82 (2014) 106–113.
- E.P. Reddy, L. Davydov, P. Smirniotis, TiO2-loaded zeolites and
mesoporous materials in the sonophotocatalytic decomposition
of aqueous organic pollutants: the role of the support, Appl.
Catal., B, 42 (2003) 1–11.
- H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, Application of
supported TiO2 onto Iranian clinoptilolite nanoparticles in the
photodegradation of mixture of aniline and 2,4-dinitroaniline
aqueous solution, J. Ind. Eng. Chem., 26 (2015) 315–321.
- F. Abdollah, S.M. Borghei, E. Moniri, S. Kimiagar,
H.A. Panahi, Laser irradiation for controlling size of TiO2-zeolite nanocomposite in removal of 2,4-dichlorophenoxyacetic
acid herbicide, Water Sci. Technol., 80 (2019) 864–873.
- A.H. Alwash, A.Z. Abdullah, N. Ismail, Elucidation of reaction
behaviors in sonocatalytic decolorization of amaranth dye in
water using zeolite Y co-incorporated with Fe and TiO2, Adv.
Chem. Eng. Sci., 03 (2013) 113–122.
- I. Mironyuk, T. Tatarchuk, M. Naushad, H. Vasylyeva,
I. Mykytyn, Highly efficient adsorption of strontium ions by
carbonated mesoporous TiO2, J. Mol. Liq., 285 (2019) 742–753.
- J.I. Pérez-Martínez, J.M. Ginés, E. Morillo, M.L.G. Rodríguez, J.R.
Moyano, 2,4-dichlorophenoxyacetic acid/partially methylated-β-cyclodextrin inclusion complexes, Environ. Technol., 21 (2000)
209–216.
- J.M. Ginés, J.I. Pérez-Martinez, M.J. Arias, J.R. Moyano,
E. Morillo, A. Ruiz-Conde, P.J. Sánchez-Soto, Inclusion of
the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) with
β-cyclodextrin by different processing methods, Chemosphere,
33 (1996) 321–334.
- J.M. Salman, V.O. Njoku, B.H. Hameed, Batch and fixed-bed
adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm
frond activated carbon, Chem. Eng. J., 174 (2011) 33–40.
- Y.F. Chao, P.C. Chen, S.L. Wang, Adsorption of 2,4-D on Mg/Al-NO3 layered double hydroxides with varying layer charge
density, Appl. Clay Sci., 40 (2008) 193–200.
- I. Mironyuk, T. Tatarchuk, H. Vasylyeva, M. Naushad,
I. Mykytyn, Adsorption of Sr(II) cations onto phosphated
mesoporous titanium dioxide: mechanism, isotherm and
kinetics studies, J. Environ. Chem. Eng., 7 (2019) 103430,
doi:10.1016/j.jece.2019.103430.
- Y. Liu, Some consideration on the Langmuir isotherm equation,
Colloids Surf., A, 274 (2006) 34–36.
- D.H. Everett, Manual of symbols and terminology for
physicochemical quantities and units, Appendix II: definitions,
terminology and symbols in colloid and surface chemistry,
Pure Appl. Chem., 31 (1972) 577–638.
- K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore- and
solid-diffusion kinetics in fixed-bed adsorption under constantpattern
conditions, Ind. Eng. Chem. Fundam., 5 (1966) 212–223.
- H. Freundlich, Über die adsorption in lösungen, Z. Phys.
Chem., 57 (1907) 385–470.
- M.I. Temkin, V.M. Pyzhev, Kinetic of ammonia synthesis on
promoted iron catalyst, Acta Phys. Chim., 12 (1940) 327–356.
- D.L.P.O. Redlich, A useful adsorption isotherm, J. Phys.
Chem., 63 (1959) 1024–1026.
- S. Lagergreen, Zur theorie der sogenannten adsorption gelöster
Stoffe, Z. Chem. Ind. Kolloide, 2 (1907) 15.
- Y.S. Ho, Adsorption of Heavy Metals from Waste Streams by
Peat, Ph.D Thesis, University of Birmingham, Birmingham,
UK, 1995.
- S. Nethaji, A. Sivasamy, G. Thennarasu, S. Saravanan,
Adsorption of Malachite green dye onto activated carbon
derived from Borassus aethiopum flower biomass, J. Hazard.
Mater., 181 (2010) 271–280.
- K. Nejati, S. Davary, M. Saati, Study of 2,4-dichlorophenoxyacetic
acid (2,4-D) removal by Cu-Fe-layered double hydroxide from
aqueous solution, Appl. Surf. Sci., 280 (2013) 67–73.
- M. Dehghani, S. Nasseri, M. Karamimanesh, Removal of
2,4-dichlorophenolyxacetic acid (2,4-D) herbicide in the aqueous
phase using modified granular activated carbon, J. Environ.
Health Sci. Eng., 12 (2014) 28, doi: 10.1186/2052-336X-12-28.