References

  1. N. Jaafarzadeh, F. Ghanbari, M. Ahmadi, Catalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe2O3 activated peroxymonosulfate: influential factors and mechanism determination, Chemosphere, 169 (2017) 568–576.
  2. Y. Wang, C. Wu, X. Wang, S. Zhou, The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01, J. Hazard. Mater., 164 (2009) 941–947.
  3. Y. Tang, S. Luo, Y. Teng, C. Liu, X. Xu, X. Zhang, L. Chen, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays, J. Hazard. Mater., 241–242 (2012) 323–330.
  4. Statistical Centre of Iran, Agricultural Statistic Report 1391, Agricultural Ministry, Tehran, Iran, 2012.
  5. E.R. Bandala, M.A. Peláez, D.D. Dionysiou, S. Gelover, J. Garcia, D. Macías, Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) using cobalt-peroxymonosulfate in Fenton-like process, J. Photochem. Photobiol., A, 186 (2007) 357–363.
  6. A. Boivin, S. Amellal, M. Schiavon, M.T. Van Genuchten, 2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils, Environ. Pollut., 138 (2005) 92–99.
  7. N. Jaafarzadeh, F. Ghanbari, M. Ahmadi, Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/ magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes, Chem. Eng. J., 320 (2017) 436–447.
  8. M.A. Lemus, T. López, S. Recillas, D.M. Frías, M. Montes, J.J. Delgado, M.A. Centeno, J.A. Odriozola, Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid using nanocrystalline cryptomelane composite catalysts, J. Mol. Catal. A: Chem., 281 (2008) 107–112.
  9. Y. Xi, M. Mallavarapu, R. Naidu, Adsorption of the herbicide 2,4-D on organo-palygorskite, Appl. Clay Sci., 49 (2010) 255–261.
  10. E.I. Seck, J.M. Doña-Rodríguez, C. Fernández-Rodríguez, O.M. González-Díaz, J. Araña, J. Pérez-Peña, Photocatalytic removal of 2,4-dichlorophenoxyacetic acid by using sol-gel synthesized nanocrystalline and commercial TiO2: Operational parameters optimization and toxicity studies, Appl. Catal., B, 125 (2012) 28–34.
  11. WHO, Guidelines for Drinking-Water Quality, Vol. 1, Recommendations, 3rd ed., World Health Organization, Geneva, 2004.
  12. C.Y. Kwan, W. Chu, A study of the reaction mechanisms of the degradation of 2,4-dichlorophenoxyacetic acid by oxalatemediated photooxidation, Water Res., 38 (2004) 4213–4221.
  13. S.C. Lee, N. Hasan, H.O. Lintang, M. Shamsuddin, L. Yuliati, Photocatalytic removal of 2,4-dichlorophenoxyacetic acid herbicide on copper oxide/titanium dioxide prepared by co-precipitation method, IOP Conf. Ser.: Mater. Sci. Eng., 107 (2016) 012012, doi: 10.1088/1757-899x/107/1/012012.
  14. A.M. Bello-Ramírez, B.Y. Carreón-Garabito, A.A. Nava-Ocampo, A theoretical approach to the mechanism of biological oxidation of organophosphorus pesticides, Toxicology, 149 (2000) 63–68.
  15. S.P. Kamble, S.P. Deosarkar, S.B. Sawant, J.A. Moulijn, V.G. Pangarkar, Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid using concentrated solar radiation: batch and continuous operation, Ind. Eng. Chem. Res., 43 (2004) 8178–8187.
  16. E. Bazrafshan, F. Kord Mostafapour, H. Faridi, M. Farzadkia, S. Sargazi, A. Sohrabi, Removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous environments using single-walled carbon nanotubes, Health Scope, 2 (2015) 39–46.
  17. M. Naushad, G. Sharma, Z.A. Alothman, Photodegradation of toxic dye using gum Arabic-crosslinked-poly(acrylamide)/Ni(OH)2/FeOOH nanocomposites hydrogel, J. Cleaner Prod., 241 (2019) 118263, doi: 10.1016/j.jclepro.2019.118263.
  18. H. El Harmoudi, L. El Gaini, E. Daoudi, M. Rhazi, Y. Boughaleb, M.A. El Mhammedi, A. Migalska-Zalas, M. Bakasse, Removal of 2,4-D from aqueous solutions by adsorption processes using two biopolymers: chitin and chitosan and their optical properties, Opt. Mater., 36 (2014) 1471–1477.
  19. B.K. Jung, Z. Hasan, S.H. Jhung, Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metalorganic framework, Chem. Eng. J., 234 (2013) 99–105.
  20. S.K. Deokar, S.A. Mandavgane, B.D. Kulkarni, Adsorptive removal of 2,4-dichlorophenoxyacetic acid from aqueous solution using bagasse fly ash as adsorbent in batch and packed-bed techniques, Clean Technol. Environ. Policy, 18 (2016) 1971–1983.
  21. A. Kumar, G. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, C. Guo, F.J. Stadler, Biochar-templated g-C3N4/Bi2O2CO3/CoFe2O4 nano-assembly for visible and solar assisted photodegradation of paraquat, nitrophenol reduction and CO2 conversion, Chem. Eng. J., 339 (2018) 393–410.
  22. A. Kumar, G. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, F.J. Stadler, Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment, Chem. Eng. J., 334 (2018) 462–478.
  23. A. Kumar, Shalini, G. Sharma, M. Naushad, A. Kumar, S. Kalia, C. Guo, G.T. Mola, Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil, J. Photochem. Photobiol., A, 337 (2017) 118–131.
  24. T. Tatarchuk, N. Paliychuk, R.B. Bitra, A. Shyichuk, M.U. Naushad, I. Mironyuk, D. Ziółkowska, Adsorptive removal of toxic methylene blue and acid orange 7 dyes from aqueous medium using cobalt-zinc ferrite nanoadsorbents, Desal. Water Treat., 150 (2019) 374–385.
  25. S. Liu, M. Lim, R. Amal, TiO2-coated natural zeolite: rapid humic acid adsorption and effective photocatalytic regeneration, Chem. Eng. Sci., 105 (2014) 46–52.
  26. T. Tatarchuk, A. Shyichuk, I. Mironyuk, M. Naushad, A review on removal of uranium(VI) ions using titanium dioxide based sorbents, J. Mol. Liq., 293 (2019) 111563, doi: 10.1016/j. molliq.2019.111563.
  27. B. Wang, G. Zhang, Z. Sun, S. Zheng, Synthesis of natural porous minerals supported TiO2 nanoparticles and their photocatalytic performance towards Rhodamine B degradation, Powder Technol., 262 (2014) 1–8.
  28. N. Khalfaoui-Boutoumi, H. Boutoumi, H. Khalaf, B. David, Synthesis and characterization of TiO2–montmorillonite/polythiophene-SDS nanocomposites: application in the sonophotocatalytic degradation of rhodamine 6G, Appl. Clay Sci., 80–81 (2013) 56–62.
  29. J. Castañeda-Contreras, V.F. Marañón-Ruiz, R. Chiu-Zárate, H. Pérez-Ladrón de Guevara, R. Rodriguez, C. Michel-Uribe, Photocatalytic activity of erbium-doped TiO2 nanoparticles immobilized in macro-porous silica films, Mater. Res. Bull., 47 (2012) 290–295.
  30. K. Mamulová Kutláková, J. Tokarský, P. Kovář, S. Vojtěšková, A. Kovářová, B. Smetana, J. Kukutschová, P. Čapková, V. Matějka, Preparation and characterization of photoactive composite kaolinite/TiO2, J. Hazard. Mater., 188 (2011) 212–220.
  31. H. Ichiura, T. Kitaoka, H. Tanaka, Removal of indoor pollutants under UV irradiation by a composite TiO2–zeolite sheet prepared using a papermaking technique, Chemosphere, 50 (2003) 79–83.
  32. A. Taheri Najafabadi, F. Taghipour, Physicochemical impact of zeolites as the support for photocatalytic hydrogen production using solar-activated TiO2-based nanoparticles, Energy Convers. Manage., 82 (2014) 106–113.
  33. E.P. Reddy, L. Davydov, P. Smirniotis, TiO2-loaded zeolites and mesoporous materials in the sonophotocatalytic decomposition of aqueous organic pollutants: the role of the support, Appl. Catal., B, 42 (2003) 1–11.
  34. H. Zabihi-Mobarakeh, A. Nezamzadeh-Ejhieh, Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2,4-dinitroaniline aqueous solution, J. Ind. Eng. Chem., 26 (2015) 315–321.
  35. F. Abdollah, S.M. Borghei, E. Moniri, S. Kimiagar, H.A. Panahi, Laser irradiation for controlling size of TiO2-zeolite nanocomposite in removal of 2,4-dichlorophenoxyacetic acid herbicide, Water Sci. Technol., 80 (2019) 864–873.
  36. A.H. Alwash, A.Z. Abdullah, N. Ismail, Elucidation of reaction behaviors in sonocatalytic decolorization of amaranth dye in water using zeolite Y co-incorporated with Fe and TiO2, Adv. Chem. Eng. Sci., 03 (2013) 113–122.
  37. I. Mironyuk, T. Tatarchuk, M. Naushad, H. Vasylyeva, I. Mykytyn, Highly efficient adsorption of strontium ions by carbonated mesoporous TiO2, J. Mol. Liq., 285 (2019) 742–753.
  38. J.I. Pérez-Martínez, J.M. Ginés, E. Morillo, M.L.G. Rodríguez, J.R. Moyano, 2,4-dichlorophenoxyacetic acid/partially methylated-β-cyclodextrin inclusion complexes, Environ. Technol., 21 (2000) 209–216.
  39. J.M. Ginés, J.I. Pérez-Martinez, M.J. Arias, J.R. Moyano, E. Morillo, A. Ruiz-Conde, P.J. Sánchez-Soto, Inclusion of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) with β-cyclodextrin by different processing methods, Chemosphere, 33 (1996) 321–334.
  40. J.M. Salman, V.O. Njoku, B.H. Hameed, Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm frond activated carbon, Chem. Eng. J., 174 (2011) 33–40.
  41. Y.F. Chao, P.C. Chen, S.L. Wang, Adsorption of 2,4-D on Mg/Al-NO3 layered double hydroxides with varying layer charge density, Appl. Clay Sci., 40 (2008) 193–200.
  42. I. Mironyuk, T. Tatarchuk, H. Vasylyeva, M. Naushad, I. Mykytyn, Adsorption of Sr(II) cations onto phosphated mesoporous titanium dioxide: mechanism, isotherm and kinetics studies, J. Environ. Chem. Eng., 7 (2019) 103430, doi:10.1016/j.jece.2019.103430.
  43. Y. Liu, Some consideration on the Langmuir isotherm equation, Colloids Surf., A, 274 (2006) 34–36.
  44. D.H. Everett, Manual of symbols and terminology for physicochemical quantities and units, Appendix II: definitions, terminology and symbols in colloid and surface chemistry, Pure Appl. Chem., 31 (1972) 577–638.
  45. K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore- and solid-diffusion kinetics in fixed-bed adsorption under constantpattern conditions, Ind. Eng. Chem. Fundam., 5 (1966) 212–223.
  46. H. Freundlich, Über die adsorption in lösungen, Z. Phys. Chem., 57 (1907) 385–470.
  47. M.I. Temkin, V.M. Pyzhev, Kinetic of ammonia synthesis on promoted iron catalyst, Acta Phys. Chim., 12 (1940) 327–356.
  48. D.L.P.O. Redlich, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024–1026.
  49. S. Lagergreen, Zur theorie der sogenannten adsorption gelöster Stoffe, Z. Chem. Ind. Kolloide, 2 (1907) 15.
  50. Y.S. Ho, Adsorption of Heavy Metals from Waste Streams by Peat, Ph.D Thesis, University of Birmingham, Birmingham, UK, 1995.
  51. S. Nethaji, A. Sivasamy, G. Thennarasu, S. Saravanan, Adsorption of Malachite green dye onto activated carbon derived from Borassus aethiopum flower biomass, J. Hazard. Mater., 181 (2010) 271–280.
  52. K. Nejati, S. Davary, M. Saati, Study of 2,4-dichlorophenoxyacetic acid (2,4-D) removal by Cu-Fe-layered double hydroxide from aqueous solution, Appl. Surf. Sci., 280 (2013) 67–73.
  53. M. Dehghani, S. Nasseri, M. Karamimanesh, Removal of 2,4-dichlorophenolyxacetic acid (2,4-D) herbicide in the aqueous phase using modified granular activated carbon, J. Environ. Health Sci. Eng., 12 (2014) 28, doi: 10.1186/2052-336X-12-28.