References

  1. G. Park, M. Takekawa, S. Soda, M. Ike, K. Furukawa, Temperature dependence of nitrogen removal activity by anammox bacteria enriched at low temperatures, J. Biosci. Bioeng., 123 (2017) 505–511.
  2. G.B. Avery, R.D. Shannon, J.R. White, C.S. Martens, M.J. Alperin, Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO2 reduction, Biogeochemistry, 62 (2003) 19–37.
  3. M. Strous, M.S.M. Jetten, Anaerobic oxidation of methane and ammonium, Annu. Rev. Microbiol., 58 (2004) 99–117.
  4. G. Myhre, D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, H. Zhang, Anthropogenic and Natural Radiative Forcing, Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
  5. Q.L. Wang, J. Sun, S.T. Liu, L. Gao, X. Zhou, D.B. Wang, K. Song, L.D. Nghiem, Free ammonia pretreatment improves anaerobic methane generation from algae, Water Res., 162 (2019) 269–275.
  6. F.W. Sollo, H.F. Mueller, T.E. Larson, Denitrification of wastewater effluents with methane, J. Water Pollut. Control Fed., 48 (1976) 1840–1842.
  7. I. Mason, Methane as a carbon source in biological denitrification, J. Water Pollut. Control Fed., 49 (1977) 855–857.
  8. K.F. Ettwig, M.K. Butler, D. Le Paslier, E. Pelletier, S. Mangenot, M.M.M. Kuypers, F. Schreiber, B.E. Dutilh, J. Zedelius, D. de Beer, J. Gloerich, H.J.C.T. Wessels, T. van Alen, F. Luesken, M.L. Wu, K.T. van de Pas-Schoonen, H.J.M. Op den Camp, E.M. Janssen-Megens, K.-J. Francoijs, H. Stunnenberg, J. Weissenbach, M.S.M. Jetten, M. Strous, Nitrite-driven anaerobic methane oxidation by oxygenic bacteria, Nature, 464 (2010) 543–548.
  9. S. Islas-Lima, F. Thalasso, J. Gómez-Hernandez, Evidence of anoxic methane oxidation coupled to denitrification, Water Res., 38 (2004) 13–16.
  10. C. Chen, Y. Feng, Y. Wang, X. Yu, J. Wang, Research progress in influence factor of anammox reaction, Ecol. Environ. Sci., 25 (2016) 346–352.
  11. A.A. Raghoebarsing, A. Pol, K.T. van de Pas-Schoonen, A.J.P. Smolders, K.F. Ettwig, W.I.C. Rijpstra, S. Schouten, J.S.S. Damste, H.J.M. Op den Camp, M.S.M. Jetten, M. Strous, A microbial consortium couples anaerobic methane oxidation to denitrification, Nature, 440 (2006) 918–921.
  12. Z. He, C. Cai, J. Wang, X. Xu, P. Zheng, M.S. Jetten, B. Hu, A novel denitrifying methanotroph of the NC10 phylum and its microcolony, Sci. Rep., 6 (2016) 32241.
  13. J.S. Graf, M.J. Mayr, H.K. Marchant, D. Tienken, P.F. Hach, A. Brand, C.J. Schubert, M.M.M. Kuypers, J. Milucka, Bloom of a denitrifying methanotroph, ‘Candidatus Methylomirabilis limnetica’, in a deep stratified lake, Environ. Microbiol., 20 (2018) 2598–2614.
  14. W. Versantvoort, S. Guerrero-Cruz, D.R. Speth, J. Frank, L. Gambelli, G. Cremers, T. van Alen, M.S.M. Jetten, B. Kartal, H.J.M. Op den Camp, J. Reimann, Comparative genomics of Candidatus Methylomirabilis species and description of Ca. Methylomirabilis Lanthanidiphila, Front. Microbiol., 9 (2018) 1672.
  15. M.F. Haroon, S. Hu, Y. Shi, M. Imelfort, J. Keller, P. Hugenholtz, Z. Yuan, G.W. Tyson, Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage, Nature, 500 (2013) 567–570.
  16. K. Ettwig, S. Shima, K. van de Pas-Schoonen, J. Kahnt, M. Medema, H. op den Camp, M. Jetten, M. Strous, Denitrifying bacteria anaerobically oxidize methane in the absence of archaea, Environ. Microbiol., 10 (2008) 3164–3173.
  17. Z. He, C. Cai, S. Geng, L. Lou, X. Xu, P. Zheng, B. Hu, Modeling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation, Bioresour. Technol., 147 (2013) 315–320.
  18. B. Schink, J.S. Deutzmann, Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake, Appl. Environ. Microbiol., 77 (2011) 4429–4436.
  19. M. Hatamoto, T. Sato, S. Nemoto, T. Yamaguchi, Cultivation of denitrifying anaerobic methane-oxidizing microorganisms in a continuous-flow sponge bioreactor, Appl. Microbiol. Biotechnol., 101 (2017) 5881–5888.
  20. Z.F. He, C. Cai, L.D. Shen, L.P. Lou, P. Zheng, X.H. Xu, B.L. Hu, Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria, Appl. Microbiol. Biotechnol., 99 (2015) 939–946.
  21. Z. He, S. Geng, C. Cai, S. Liu, Y. Liu, Y. Pan, L. Lou, P. Zheng, X. Xu, B. Hu, Anaerobic oxidation of methane coupled to nitrite reduction by halophilic marine NC10 bacteria, Appl. Environ. Microbiol., 81 (2015) 5538–5545.
  22. S. Hu, R.J. Zeng, L.C. Burow, P. Lant, J. Keller, Z. Yuan, Enrichment of denitrifying anaerobic methane oxidizing microorganisms, Environ. Microbiol. Rep., 1 (2009) 377–384.
  23. X. Chen, J. Guo, Y. Shi, S. Hu, Z. Yuan, B.J. Ni, Modeling of simultaneous anaerobic methane and ammonium oxidation in a membrane biofilm reactor, Environ. Sci. Technol., 48 (2014) 9540–9547.
  24. P.L. Lu, T. Liu, B.J. Ni, J.H. Guo, Z.G. Yuan, S.H. Hu, Growth kinetics of Candidatus ‘Methanoperedens nitroreducens’ enriched in a laboratory reactor, Sci. Total Environ.,659 (2019) 442–450.
  25. L. Ming, Wu, K.F. Ettwig, M.S.M. Jetten, S. Marc, J.T. Keltjens, V.N. Laura, A new intra-aerobic metabolism in the nitritedependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’, Biochem. Soc. Trans., 39 (2011) 243–248.
  26. Y. Wang, G. Zhu, H.R. Harhangi, B. Zhu, M.S.M. Jetten, C. Yin, H.J.M.O.D. Camp, Co-occurrence and distribution of nitritedependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil, FEMS Microbiol. Lett., 336 (2012) 79–88.
  27. C. Deusner, T. Holler, G.L. Arnold, S.M. Bernasconi, M.J. Formolo, B. Brunner, Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration, Earth Planet. Sci. Lett., 399 (2014) 61–73.
  28. S.J. Hallam, N. Putnam, C.M. Preston, J.C. Detter, D. Rokhsar, P.M. Richardson, E.F. DeLong, Reverse methanogenesis: testing the hypothesis with environmental genomics, Science, 305 (2004) 1457–1462.
  29. A. Meyerdierks, M. Kube, I. Kostadinov, H. Teeling, F.O. Glöckner, R. Reinhardt, R. Amann, Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group, Environ. Microbiol., 12 (2010) 422–439.
  30. A. Arshad, D.R. Speth, R.M. de Graaf, H.J.M. Op den Camp, M.S.M. Jetten, C.U. Welte, A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by methanoperedens-like archaea, Front. Microbiol., 6 (2015) 1–14.
  31. S.J. Hallam, P.R. Girguis, C.M. Preston, P.M. Richardson, E.F. DeLong, Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea, Appl. Environ. Microbiol., 69 (2003) 5483–5491.
  32. L. Shen, A review of study on microbial ecology of nitratedependent anaerobic methane oxidation, Turang Xuebao, 52 (2015) 713–722.
  33. R.K. Thauer, S. Shima, Biogeochemistry: methane and microbes, Nature, 440 (2006) 878–879.
  34. A.M. Laverman, P. Van Cappellen, D. Van Rotterdam-Los, C. Pallud, J. Abell, Potential rates and pathways of microbial nitrate reduction in coastal sediments, FEMS Microbiol. Ecol., 58 (2006) 179–192.
  35. K.F. Ettwig, T. van Alen, K.T. van de Pas-Schoonen, M.S. Jetten, M. Strous, Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum, Appl. Environ. Microbiol., 75 (2009) 3656–3662.
  36. Z.S. Qian, L. Fu, J. Ding, Z.W. Ding, J.Z. Raymond, Enrichment of denitrifying anaerobic methane oxidation microbes in a hollow fiber mambrane bioreactor, J. Univ. Sci. Technol. China, 44 (2014) 887–892.
  37. X.W. Zhang, K. Liu, P. Li, J.J.J. Jiao, V. Dvornyk, J.D. Gu, Molecular existence and diversity of nitrite-dependent anaerobic methane oxidizing (n-damo) bacteria in the lakes of badain of the gobi desert, Geomicrobiol. J., 36 (2019) 522–532.
  38. M. Hatamoto, M. Kimura, T. Sato, M. Koizumi, M. Takahashi, S. Kawakami, N. Araki, T. Yamaguchi, Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures, PLos One, 9 (2014) e115823.
  39. R. Ma, Z. Hu, J. Zhang, H. Ma, L. Jiang, D. Ru, Reduction of greenhouse gases emissions during anoxic wastewater treatment by strengthening nitrite-dependent anaerobic methane oxidation process, Bioresource Technol., 235 (2017) 211–218.
  40. F. Luesken, T. van Alen, E. van der Biezen, C. Frijters, G. Toonen, C. Kampman, T. Hendrickx, G. Zeeman, H. Temmink, M. Strous, H. Op den Camp, M. Jetten, Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge, Appl. Microbiol. Biotechnol., 92 (2011) 845–854.
  41. Z.F. He, S. Geng, Y.W. Pan, C.Y. Cai, J.Q. Wang, L.Q. Wang, S. Liu, P. Zheng, X.H. Xu, B.L. Hu, Improvement of the trace metal composition of medium for nitrite-dependent anaerobic methane oxidation bacteria: iron(II) and copper(II) make a difference, Water Res., 85 (2015) 235–243.
  42. C. Kampman, T.L.G. Hendrickx, F.A. Luesken, T.A. van Alen, H.J.M. Op den Camp, M.S.M. Jetten, G. Zeeman, C.J.N. Buisman, H. Temmink, Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment, J. Hazard. Mater., 227–228 (2012) 164–171.
  43. B. Zhu, G.V. Dijk, C. Fritz, A.J.P. Smolders, A. Pol, M.S.M. Jetten, K.F. Ettwig, Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria, Appl. Environ. Microbiol., 78 (2012) 8657–8665.
  44. Y. Shi, S. Hu, J. Lou, P. Lu, J. Keller, Z. Yuan, Nitrogen removal from wastewater by coupling anammox and methanedependent denitrification in a membrane biofilm reactor, Environ. Sci. Technol., 47 (2013) 11577–11583.
  45. C. Kampman, H. Temmink, T.L. Hendrickx, G. Zeeman, C.J. Buisman, Enrichment of denitrifying methanotrophic bacteria from municipal wastewater sludge in a membrane bioreactor at 20°C, J. Hazard. Mater., 274 (2014) 428–435.
  46. B. Hu, Z. He, S. Geng, C. Cai, L. Lou, P. Zheng, X. Xu, Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration, Appl. Microbiol. Biotechnol., 98 (2014) 7983–7991.
  47. S. Wang, Q. Wu, T. Lei, L. Peng, H. Xia, Enrichment of denitrifying methanotrophic bacteria from Taihu sediments by a membrane biofilm bioreactor at ambient temperature, Environ. Sci. Pollut. Res. Int., 23 (2015) 5627–5634.
  48. T. Allegue, A. Arias, N. Fernandez-Gonzalez, F. Omil, J.M. Garrido, Enrichment of nitrite-dependent anaerobic methane oxidizing bacteria in a membrane bioreactor, Chem. Eng. J., 347 (2018) 721–730.
  49. E.R. Hall, A. Monti, W.W. Mohn, A comparison of bacterial populations in enhanced biological phosphorus removal processes using membrane filtration or gravity sedimentation for solids-liquid separation, Water Res., 44 (2010) 2703–2714.
  50. R.C. Jin, B.L. Hu, P. Zheng, M. Qaisar, A.H. Hu, E. Islam, Quantitative comparison of stability of ANAMMOX process in different reactor configurations, Bioresour. Technol., 99 (2008) 1603–1609.
  51. M. Strous, J.J. Heijnen, J.G. Kuenen, M.S.M. Jetten, The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms, Appl. Microbio. Biotechnol., 50 (1998) 589–596.
  52. Y. Qin, S. Zhou, Enrichment and molecular diversity of anammox bacteria in uasb reactor, Environ. Prot. Eng., 35 (2009) 17–26.
  53. O. Modin, K. Fukushi, F. Nakajima, K. Yamamoto, Nitrate removal and biofilm characteristics in methanotrophic membrane biofilm reactors with various gas supply regimes, Water Res., 44 (2010) 85–96.
  54. T. Ahmed, M.J. Semmens, M.A. Voss, Energy loss characteristics of parallel flow bubbleless hollow fiber membrane aerators, J. Membr. Sci., 171 (2000) 87–96.
  55. H. Hasar, U. Ipek, Gas permeable-membrane for hydrogenotrophic denitrification, Clean Soil Air Water, 38 (2010) 23–26.
  56. K.C. Lee, B.E. Rittmann, Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water, Water Res., 36 (2002) 2040–2052.
  57. S. Xia, F. Zhong, Y. Zhang, H. Li, X. Yang, Bio-reduction of nitrate from groundwater using a hydrogen-based membrane biofilm reactor, J. Environ. Sci., 22 (2010) 257–262.
  58. Z.W. Ding, Y.Z. Lu, L. Fu, J. Ding, R.J. Zeng, Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor, Appl. Microbiol. Biotechnol., 101 (2017) 437–446.
  59. J. Ding, Y.Z. Lu, L. Fu, Z.W. Ding, Y. Mu, S.H. Cheng, R.J. Zeng, Decoupling of DAMO archaea from DAMO bacteria in a methane driven microbial fuel cell, Water Res., 110 (2017) 112–119.
  60. S. Hu, R.J. Zeng, J. Keller, P.A. Lant, Z. Yuan, Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process, Environ. Microbiol. Rep., 3 (2011) 315–319.
  61. L.A. Fu, J. Ding, Y.Z. Lu, Z.W. Ding, Y.N. Bai, R.J. Zeng, Hollow fiber membrane bioreactor affects microbial community and morphology of the DAMO and Anammox co-culture system, Bioresour. Technol., 232 (2017) 247–253.
  62. Q.L. Wang, H.R. Duan, W. Wei, B.J. Ni, A. Laloo, Z.G. Yuan, Achieving stable mainstream nitrogen removal via the nitrite pathway by sludge treatment using free ammonia, Environ. Sci. Technol., 51 (2017) 9800–9807.
  63. J.M. Yarbrough, J.B. Rake, R.G. Eagon, Bacterial inhibitory effects of nitrite: inhibition of active transport, but not of group translocation, and of intracellular enzymes, Appl. Environ. Microbiol., 39 (1980) 831–834.
  64. O. Rasigraf, D.M. Kool, M.S. Jetten, J.D. Sinninghe, K.F. Ettwig, Autotrophic carbon dioxide fixation via the Calvin-Benson- Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”, Appl. Environ. Microbiol., 80 (2014) 2451–2460.
  65. J. Zhao, X.X. Wang, X.Y. Li, S.Y. Jia, Y.Z. Peng, Advanced nutrient removal from ammonia and domestic wastewaters by a novel process based on simultaneous partial nitrification-anammox and modified denitrifying phosphorus removal, Chem. Eng. J., 354 (2018) 589–598.
  66. R. Zhao, L. Zhu, Q. Wu, J. L.Chang, L.G. Shao, P. Liang, X. Huang, Effect of environmental factors on nitrite-dependent denitrifying anaerobic methane oxidation, Acta Sci. Circumst., 37 (2017) 178–184.
  67. Y. Zhang, J.P. Henriet, J. Bursens, N. Boon, Stimulation of in vitro anaerobic oxidation of methane rate in a continuous highpressure bioreactor, Bioresour. Technol., 101 (2010) 3132–3138.
  68. C. Deusner, V. Meyer, T.G. Ferdelman, High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane, Biotechnol. Bioeng., 105 (2010) 524–533.
  69. N.J.R. Kraakman, J. Rocha-Rios, M.C.M.V. Loosdrecht, Review of mass transfer aspects for biological gas treatment, Appl. Microbiol. Biotechnol., 91 (2011) 873–886.
  70. L. Fu, Z.W. Ding, J. Ding, F. Zhang, R.J. Zeng, The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes, Appl. Microbiol. Biotechnol., 99 (2015) 7925–7936.
  71. O. Modin, K. Fukushi, F. Nakajima, K. Yamamoto, Performance of a membrane biofilm reactor for denitrification with methane, Bioresour. Technol., 99 (2008) 8054–8060.
  72. C. Duan, M. Luo, C. Yang, H. Jiang, X. Xing, Effects of different hollow fiber membrane modules on bubbless aeration of methane and oxygen, Chin. J. Process Eng., 10 (2010) 395–399.
  73. A. Terada, S. Kaku, S. Matsumoto, S. Tsuneda, Rapid autohydrogenotrophic denitrification by a membrane biofilm reactor equipped with a fibrous support around a gaspermeable membrane, Biochem. Eng. J., 31 (2006) 84–91.
  74. S. Xu, W. Lu, M.F. Mustafa, L.M. Caicedo, H. Guo, X. Fu, H. Wang, Co-existence of anaerobic ammonium oxidation bacteria and denitrifying anaerobic methane oxidation bacteria in sewage sludge: community diversity and seasonal dynamics, Microb. Ecol., 74 (2017) 832–840.
  75. F.A. Luesken, M.L. Wu, H.J.M. Op den Camp, J.T. Keltjens, H. Stunnenberg, K.-J. Francoijs, M. Strous, M.S.M. Jetten, Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis, Environ. Microbiol., 14 (2012) 1024–1034.
  76. M. Ibrahim, N. Yusof, M.Z. Mohd Yusoff, M.A. Hassan, Enrichment of anaerobic ammonium oxidation (anammox) bacteria for short start-up of the anammox process: a review, Desal. Water Treat., 57 (2015) 13958–13978.
  77. Z.F. He, S. Geng, L.D. Shen, L.P. Lou, P. Zheng, X.H. Xu, B.L. Hu, The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction, Water Res., 68 (2015) 554–562.
  78. Z.F. He, S. Geng, L.Q. Wang, C.Y. Cai, J.Q. Wang, J.Q. Liu, P. Zheng, X.H. Xu, B.L. Hu, Improvement of mineral nutrient concentrations and pH control for the nitrite-dependent anaerobic methane oxidation process, Sep. Purif. Technol., 162 (2016) 148–153.
  79. R. Balasubramanian, S.M. Smith, S. Rawat, L.A. Yatsunyk, T.L. Stemmler, A.C. Rosenzweig, oxidation of methane by a biological dicopper center, Nature, 465 (2010) 115–119.
  80. M.L. Wu, J.C.T. Wessels, A. Pol, H.J.M. Op den Camp, M.S. Jetten, L. van Niftrik, An XoxF-type methanol dehydrogenase from the anaerobic Methanotroph ‘Candidatus Methylomirabilis oxyfera’, Appl. Environ. Microbiol., 81 (2015) 1442–1451.
  81. M. Hatamoto, S. Nemoto, T. Yamaguchi, Effects of copper and PQQ on the denitrification activities of microorganisms facilitating nitrite- and nitrate-dependent DAMO reaction, Int. J. Environ. Res., 12 (2018) 749–753.
  82. J. Wang, M. Hua, Y. Li, F. Ma, P. Zheng, B. Hu, Achieving high nitrogen removal efficiency by optimizing nitrite-dependent anaerobic methane oxidation process with growth factors, Water Res., 161 (2019) 35–42.
  83. K. Nauhaus, A. Boetius, M. Kruger, F. Widdel, In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area, Environ. Microbiol., 4 (2002) 296–305.
  84. K.F. Ettwig, B.L. Zhua, D. Spetha, J.T. Keltjensa, M.S.M. Jettena, B. Kartala, Archaea catalyze iron-dependent anaerobic oxidation of methane, Proc. Natl. Acad. Sci. U.S.A., 113 (2016) 12792–12796.
  85. A.O. Leu, C. Cai, S.J. McIlroy, G. Southam, V.J. Orphan, Z. Yuan, S. Hu, G.W. Tyson, Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae, ISME J., 14 (2020) 1030–1041.
  86. F.A. Luesken, J. Sanchez, T.A. van Alen, J. Sanabria, H.J. Op den Camp, M.S. Jetten, B. Kartal, Simultaneous nitrite-dependent anaerobic methane and ammonium oxidation processes, Appl. Environ. Microbiol., 77 (2011) 6802–6807.