References
- X. Duan, S. Indrawirawan, J. Kang, W. Tian, H. Zhang, X. Duan,
X. Zhou, H. Sun, S. Wang, Synergy of carbocatalytic and heat
activation of persulfate for evolution of reactive radicals toward
metal-free oxidation, Catal. Today., (2019), doi: 10.1016/j.cattod.2019.02.051.
- E. Ahmadi, S. Yousefzadeh, M. Ansari, H. Ghaffari A. Azari,
M. Miri, A. Mesdaghinia, R. Nabizadeh, B. Kakavandi,
P. Ahmdi, M. Badi, M. Gholami, K. Sharafi, M. Karimaei,
M. Ghoochani, M. Brahmand, S. Mohseni, M. Sarkhosh,
S. Rezaei, H. Asgharnia, E. Dehghanifard, B. Jafari, A. Mortezapour,
V. Moghaddam, M. Mahmoudi, N. Taghipour,
Performance, kinetic, and biodegradation pathway evaluation
of anaerobic fixed film fixed bed reactor in removing phthalic
acid esters from wastewater, Sci. Rep., 7 (2017), doi: 10.1038/srep41020.
- S. Yousefzadeh, E. Ahmadi, M. Gholami, H. Ghaffari, A. Azari,
M. Ansari, M. Miri, K. Sharafi, S. Rezaei, A comparative study
of anaerobic fixed film baffled reactor and up-flow anaerobic
fixed film fixed bed reactor for biological removal of diethyl
phthalate from wastewater: a performance, kinetic, biogas,
and metabolic pathway study, Biotechnol. Biofuels, 10 (2017),
doi: 10.1186/s13068-017-0826-9.
- M. Mehrjouei, S. Müller, D. Möller, Decomposition kinetics
of MTBE, ETBE and, TAEE in water and wastewater using
catalytic and photocatalytic ozonation, J. Mol. Catal A: Chem.,
386 (2014) 61–68.
- A.V. Russo, D.N.D. Lobo, S.E. Jacobo, Removal of MTBE in
columns filled with modified natural zeolites, Procedia Mater.
Sci., 8 (2015) 375–382.
- M. Nousiainen, S. Holopainen, J. Puton, M. Sillanpää, Fast
detection of methyl tert-butyl ether from water using solid
phase microextraction and ion mobility spectrometry, Talanta,
84 (2011) 738–744.
- S.R. Cater, M.I. Stefan, J.R. Bolton, A.S. Amiri, UV/H2O2
treatment of methyl tert-butyl ether in contaminated waters,
Environ. Sci. Technol. Lett., 34 (2000) 659–662.
- M.A. Khan, S.H. Lee, S. Kang, K.J. Paeng, G. Lee, S.E. Oh,
B.H. Jeon, Adsorption studies for the removal of methyl tertbutyl
ether on various commercially available GACs from an
aqueous medium, Sep. Sci. Technol., 46 (2011) 1121–1130.
- Q. Hu, C. Zhang, Z. Wang, Y. Chen, K. Mao, X. Zhang, Y. Xiong,
M. Zhu, Photodegradation of methyl tert-butyl ether (MTBE)
by UV/H2O2 and UV/TiO2, J. Hazard. Mater., 154 (2008) 795–803.
- Y. Zhang, F. Jin, Z. Shen, R. Lynch, A. Al-Tabbaa, Kinetic and
equilibrium modelling of MTBE (methyl tert-butyl ether)
adsorption on ZSM-5 zeolite: batch and column studies, J. Hazard.
Mater., 347 (2018) 461–469.
- S.G. Huling, S. Ko, S. Park, E. Kan, Persulfate oxidation of
MTBE-and chloroform-spent granular activated carbon, J. Hazard.
Mater., 192 (2011) 1484–1490.
- P.J. Squillace, J.F. Pankow, N.E. Korte, J.S. Zogorski, Review of
the environmental behavior and fate of methyl tert‐butyl ether,
Environ. Toxicol. Chem., 16 (1997) 1836–1844.
- D. Zadaka-Amir, A. Nasser, S. Nir, Y.G. Mishael, Removal of
methyl tertiary-butyl ether (MTBE) from water by polymer–zeolite composites, Microporous Mesoporous Mater., 151 (2012)
216–222.
- I. Levchuk, A. Bhatnagar, M. Sillanpää, Overview of technologies
for removal of methyl tert-butyl ether (MTBE) from water, Sci.
Total Environ., 476 (2014) 415–433.
- W. Hartley, A. Englande, D. Harrington, Health risk assessment
of groundwater contaminated with methyl tertiary butyl ether
(MTBE), Water Sci. Technol., 39 (1999) 305–310.
- N. Kuburovic, M. Todorovic, V. Raicevic, A. Orlovic, L. Jovanovic,
J. Nikolic, V. Kuburovic, S. Drmanic, T. Solevic, Removal of
methyl tertiary butyl ether from wastewaters using photolytic,
photocatalytic and microbiological degradation processes,
Desalination, 213 (2007) 123–128.
- S. Mohebali, Degradation of methyl t-butyl ether (MTBE)
by photochemical process in nanocrystalline TiO2 slurry:
mechanism, by-products and carbonate ion effect, J. Environ.
Chem. Eng., 1 (2013) 1070–1078.
- M. Mehrjouei, S. Müller, D. Möller, A review on photocatalytic
ozonation used for the treatment of water and wastewater,
Chem. Eng. J., 263 (2015) 209–219.
- A.R. Matin, S. Yousefzadeh, E. Ahmadi, A. Mahvi,
M. Alimohammadi, H. Aslani, R. Nabizadeh, A comparative
study of the disinfection efficacy of H2O2/ferrate and UV/H2O2/ferrate processes on inactivation of Bacillus subtilis spores by
response surface methodology for modeling and optimization,
Food Chem. Toxicol., 116 (2018) 129–137.
- S. Yousefzadeh, R. Nabizadeh, A. Mesdaghinia, S. Nasseri,
P. Hezarkhani, M. Beikzadeh, M. Valadi Amin, Evaluation
of disinfection efficacy of performic acid (PFA) catalyzed by
sulfuric and ascorbic acids tested on Escherichia coli (ATCC,
8739), Desal. Water. Treat., 52 (2014) 3280–3289.
- A. Shokri, A.H. Joshagani, Using microwave along with TiO2 for
degradation of 4-chloro-2-nitrophenol in aqueous environment,
Russ. J. Appl. Chem., 89 (2016) 1985–1990.
- A. Shokri, K. Mahanpoor, Degradation of ortho-toluidine
from aqueous solution by the TiO2/O3 process, Int. J. Ind. Chem.,
8 (2017) 101–108.
- A. Shokri, The treatment of spent caustic in the wastewater
of olefin units by ozonation followed by electrocoagulation
process, Desal. Water Treat., 111 (2018) 173–182.
- E. Azizi, M. Fazlzadeh, M. Ghayebzadeh, L. Hemati,
M. Beikmohammadi, H.R. Ghaffari, H.R. Zakeri, K. Sharafi,
Application of advanced oxidation process (H2O2/UV) for
removal of organic materials from pharmaceutical industry
effluent, Environ. Prot. Eng., 43 (2017) 183–191.
- V. Augugliaro, M. Litter, L. Palmisano, J. Soria, The combination
of heterogeneous photocatalysis with chemical and physical
operations: a tool for improving the photoprocess performance,
J. Photochem. Photobiol., C, 7 (2006) 127–144.
- S. Yousefzadeh, A.R. Matin, E. Ahmadi, Z. Sabeti,
M. Alimohammadi, H. Aslani, R. Nabizadeh, Response surface
methodology as a tool for modeling and optimization of Bacillus
subtilis spores inactivation by UV/nano-Fe0 process for safe
water production, Food Chem. Toxicol., 114 (2018) 334–345.
- S. Li, W. Wang, F. Liang, W.X. Zhang, Heavy metal removal
using nanoscale zero-valent iron (nZVI): theory and application
J. Hazard. Mater., 322 (2017) 163–171.
- K.V.G. Ravikumar, S. Santhosh, S.V. Sudakaran, Y.V. Nancharaiah,
P. Mrudula, N. Chandrasekaran, A. Mukherjee,
Biogenic nano zero valent iron (Bio-nZVI) anaerobic granules
for textile dye removal, J. Environ. Chem. Eng., 6 (2018)
1683–1689.
- H. Dong, Q. He, G. Zeng, L. Tang, L. Zhang, Y. Xie, Y. Zeng,
F. Zhao, Degradation of trichloroethene by nanoscale zerovalent
iron (nZVI) and nZVI activated persulfate in the
absence and presence of EDTA, Chem. Eng. J., 316 (2017)
410–418.
- H.Y. Shu, M.C. Chang, C.C. Chang, Integration of nanosized
zero-valent iron particles addition with UV/H2O2 process for
purification of azo dye Acid Black 24 solution, J. Hazard. Mater.,
167 (2009) 1178–1184.
- J. Farrell, M. Kason, N. Melitas, T. Li, Investigation of the
long-term performance of zero-valent iron for reductive
dechlorination of trichloroethylene, Environ. Sci. Technol.,
34 (2000) 514–521.
- A.M.E. Khalil, O. Eljamal, B.B. Saha, N. Matsunaga,
Performance of nanoscale zero-valent iron in nitrate reduction
from water using a laboratory-scale continuous-flow system,
Chemosphere, 197 (2018) 502–512.
- Y. Zhang, G.B. Douglas, L. Pu, Q. Zhao, Y. Tang, W. Xu, B. Luo,
W. Hong, L. Cui, Z. Ye, Zero-valent iron-facilitated reduction
of nitrate: chemical kinetics and reaction pathways, Sci. Total
Environ., 598 (2017) 1140–1150.
- Y. Mu, H.Q. Yu, J.C. Zheng, S.J. Zhang, G.P. Sheng, Reductive
degradation of nitrobenzene in aqueous solution by zero-valent
iron, Chemosphere, 54 (2004) 789–794.
- B. Li, J. Zhu, Removal of p-chloronitrobenzene from
groundwater: effectiveness and degradation mechanism of
a heterogeneous nanoparticulate zero-valent iron (NZVI)-
induced Fenton process, Chem. Eng. J., 255 (2014) 225–232.
- R. Li, Y. Gao, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Fentonlike
oxidation of 2,4-DCP in aqueous solution using iron-based
nanoparticles as the heterogeneous catalyst, J. Colloid Interface
Sci., 438 (2015) 87–93.
- S.E. Mylon, Q. Sun, T.D. Waite, Process optimization in use of
zero valent iron nanoparticles for oxidative transformations,
Chemosphere, 81 (2010) 127–131.
- M. Eglal, Nanofer Zero-Valent Iron Nanoparticles: Surface
Morphology, Structure and Reactivity with Contaminants,
Ph.D. Dissertation, Concordia University, 2014.
- V. Janda, P. Vasek, J. Bizova, Z. Belohlav, Kinetic models for
volatile chlorinated hydrocarbons removal by zero-valent iron,
Chemosphere, 54 (2004) 917–925.
- H. Zhang, H.J. Choi, C.P. Huang, Treatment of landfill leachate
by Fenton’s reagent in a continuous stirred tank reactor,
J. Hazard. Mater., 136 (2006) 618–623.
- L.G. Devi, C. Munikrishnappa, B. Nagaraj, K.E. Rajashekhar,
Effect of chloride and sulfate ions on the advanced photo
Fenton and modified photo Fenton degradation process of
Alizarin Red S, J. Mol. Catal. A: Chem., 374 (2013) 125–131.
- M.R. Taha, A. Ibrahim, Characterization of nano zero-valent
iron (nZVI) and its application in sono-Fenton process to
remove COD in palm oil mill effluent, J. Environ. Chem. Eng.,
2 (2014) 1–8.
- A.N. Módenes, F.R. Espinoza-Quiñones, F.H. Borba, D.R. Manenti,
Performance evaluation of an integrated photo-Fenton –
electrocoagulation process applied to pollutant removal from
tannery effluent in batch system, Chem. Eng. J., 197 (2012) 1–9.
- R.F. Yu, H.W. Chen, W.P. Cheng, Y.J. Lin, C.L. Huang,
Monitoring of ORP, pH and DO in heterogeneous Fenton
oxidation using nZVI as a catalyst for the treatment of azodye
textile wastewater, J. Taiwan Inst. Chem. Eng., 45 (2014)
947–954.
- D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, Nanoscale
zero valent iron and bimetallic particles for contaminated
site remediation, Water Resour., 51 (2013) 104–122.
- X.Q. Li, D.W. Elliott, W.X. Zhang, Zero-valent iron nanoparticles
for abatement of environmental pollutants: materials and
engineering aspects, Crit. Rev. Solid State Mater. Sci., 31 (2006)
111–122.
- K. Acuna-Askar, A. Englande, C. Hu, G. Jin, Methyl tertiarybutyl
ether (MTBE) biodegradation in batch and continuous
upflow fixed-biofilm reactors, Water Sci. Technol., 42 (2000)
153–161.
- K. Rusevova, F.D. Kopinke, A. Georgi, Nano-sized magnetic iron
oxides as catalysts for heterogeneous Fenton-like reactions—
influence of Fe(II)/Fe(III) ratio on catalytic performance,
J. Hazard. Mater., 241 (2012) 433–440.
- R.F. Yu, F.H. Chi, W.P. Cheng, J.C. Chang, Application of pH,
ORP, and DO monitoring to evaluate chromium(VI) removal
from wastewater by the nanoscale zero-valent iron (nZVI)
process, Chem. Eng. J., 255 (2014) 568–576.
- B. Vaferi, M. Bahmani, P. Keshavarz, D. Mowla, Experimental
and theoretical analysis of the UV/H2O2 advanced oxidation
processes treating aromatic hydrocarbons and MTBE from
contaminated synthetic wastewaters, J. Environ. Chem. Eng.,
2 (2014) 1252–1260.
- S. Hong, H. Zhang, C.M. Duttweiler, A.T. Lemley, Degradation
of methyl tertiary-butyl ether (MTBE) by anodic Fenton
treatment, J. Hazard. Mater., 144 (2007) 29–40.
- S. Giannakis, I. Hendaoui, M. Jovic, D. Grandjean, L.F. De
Alencastro, H. Girault, C. Pulgarin, Solar photo-Fenton and
UV/H2O2 processes against the antidepressant Venlafaxine in
urban wastewaters and human urine. Intermediates formation
and biodegradability assessment, Chem. Eng. J., 308 (2017)
492–504.
- H. Amanollahi, G. Moussavi, S. Giannakis, VUV/Fe(II)/H2O2 as a novel integrated process for advanced oxidation of
methyl tert-butyl ether (MTBE) in water at neutral pH: process
intensification and mechanistic aspects, Water. Res., 166 (2019)
1150–1161.
- C.B. Wang, W.X. Zhang, Synthesizing nanoscale iron particles
for rapid and complete dechlorination of TCE and PCBs,
Environ. Sci. Technol., 31 (1997) 2154–2156.
- Y.P. Sun, X.Q. Li, W.X. Zhang, H.P. Wang, A method for
the preparation of stable dispersion of zero-valent iron
nanoparticles, Colloids Surf., A, 308 (2007) 60–66.
- Y.P. Sun, X.Q. Li, J. Cao, W.X. Zhang, H.P. Wang, Characterization
of zero-valent iron nanoparticles, Adv. Colloid Interface Sci.,
120 (2006) 47–56.
- G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis,
Chemistry of borohydride reduction of iron(II) and iron(III)
ions in aqueous and nonaqueous media. Formation of nanoscale
Fe, FeB, and Fe2B powders, Inorg. Chem., 34 (1995) 28–35.
- H.Y. Shu, M.C. Chang, C.C. Chen, P.E. Chen, Using resin
supported nano zero-valent iron particles for decoloration of
Acid Blue 113 azo dye solution, J. Hazard. Mater., 184 (2010)
499–505.
- A. Eslami, S. Nasseri, B. Yadollahi, A. Mesdaghinia, F. Vaezi,
R. Nabizadeh, Removal of methyl tert-butyl ether (MTBE) from
contaminated water by photocatalytic process, Iran. J. Public
Health, 38 (2009) 18–26.
- F.S. dos Santos, F.R. Lago, L. Yokoyama, F.V. Fonseca, Synthesis
and characterization of zero-valent iron nanoparticles
supported on SBA-15, J. Mater. Res. Technol., 6 (2017) 178–183.
- G. Vilardi, D. Sebastiani, S. Miliziano, N. Verdone, L. Di Palma,
Heterogeneous nZVI-induced Fenton oxidation process to
enhance biodegradability of excavation by-products, Chem.
Eng. J., 335 (2018) 309–320.
- J.A. Bergendahl, T.P. Thies, Fenton’s oxidation of MTBE with
zero-valent iron, Water Res., 38 (2004) 327–334.
- M. Bertelli, E. Selli, Kinetic analysis on the combined use
of photocatalysis, H2O2 photolysis, and sonolysis in the
degradation of methyl tert-butyl ether, Appl. Catal., B, 52 (2004)
205–212.
- F. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for
groundwater remediation and wastewater treatment: a review,
J. Hazard. Mater., 267 (2014) 194–205.
- S. Karthikeyan, A. Titus, A. Gnanamani, A.B. Mandal,
G. Sekaran, Treatment of textile wastewater by homogeneous
and heterogeneous Fenton oxidation processes, Desalination,
281 (2011) 438–445.