References

  1. X. Duan, S. Indrawirawan, J. Kang, W. Tian, H. Zhang, X. Duan, X. Zhou, H. Sun, S. Wang, Synergy of carbocatalytic and heat activation of persulfate for evolution of reactive radicals toward metal-free oxidation, Catal. Today., (2019), doi: 10.1016/j.cattod.2019.02.051.
  2. E. Ahmadi, S. Yousefzadeh, M. Ansari, H. Ghaffari A. Azari, M. Miri, A. Mesdaghinia, R. Nabizadeh, B. Kakavandi, P. Ahmdi, M. Badi, M. Gholami, K. Sharafi, M. Karimaei, M. Ghoochani, M. Brahmand, S. Mohseni, M. Sarkhosh, S. Rezaei, H. Asgharnia, E. Dehghanifard, B. Jafari, A. Mortezapour, V. Moghaddam, M. Mahmoudi, N. Taghipour, Performance, kinetic, and biodegradation pathway evaluation of anaerobic fixed film fixed bed reactor in removing phthalic acid esters from wastewater, Sci. Rep., 7 (2017), doi: 10.1038/srep41020.
  3. S. Yousefzadeh, E. Ahmadi, M. Gholami, H. Ghaffari, A. Azari, M. Ansari, M. Miri, K. Sharafi, S. Rezaei, A comparative study of anaerobic fixed film baffled reactor and up-flow anaerobic fixed film fixed bed reactor for biological removal of diethyl phthalate from wastewater: a performance, kinetic, biogas, and metabolic pathway study, Biotechnol. Biofuels, 10 (2017), doi: 10.1186/s13068-017-0826-9.
  4. M. Mehrjouei, S. Müller, D. Möller, Decomposition kinetics of MTBE, ETBE and, TAEE in water and wastewater using catalytic and photocatalytic ozonation, J. Mol. Catal A: Chem., 386 (2014) 61–68.
  5. A.V. Russo, D.N.D. Lobo, S.E. Jacobo, Removal of MTBE in columns filled with modified natural zeolites, Procedia Mater. Sci., 8 (2015) 375–382.
  6. M. Nousiainen, S. Holopainen, J. Puton, M. Sillanpää, Fast detection of methyl tert-butyl ether from water using solid phase microextraction and ion mobility spectrometry, Talanta, 84 (2011) 738–744.
  7. S.R. Cater, M.I. Stefan, J.R. Bolton, A.S. Amiri, UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters, Environ. Sci. Technol. Lett., 34 (2000) 659–662.
  8. M.A. Khan, S.H. Lee, S. Kang, K.J. Paeng, G. Lee, S.E. Oh, B.H. Jeon, Adsorption studies for the removal of methyl tertbutyl ether on various commercially available GACs from an aqueous medium, Sep. Sci. Technol., 46 (2011) 1121–1130.
  9. Q. Hu, C. Zhang, Z. Wang, Y. Chen, K. Mao, X. Zhang, Y. Xiong, M. Zhu, Photodegradation of methyl tert-butyl ether (MTBE) by UV/H2O2 and UV/TiO2, J. Hazard. Mater., 154 (2008) 795–803.
  10. Y. Zhang, F. Jin, Z. Shen, R. Lynch, A. Al-Tabbaa, Kinetic and equilibrium modelling of MTBE (methyl tert-butyl ether) adsorption on ZSM-5 zeolite: batch and column studies, J. Hazard. Mater., 347 (2018) 461–469.
  11. S.G. Huling, S. Ko, S. Park, E. Kan, Persulfate oxidation of MTBE-and chloroform-spent granular activated carbon, J. Hazard. Mater., 192 (2011) 1484–1490.
  12. P.J. Squillace, J.F. Pankow, N.E. Korte, J.S. Zogorski, Review of the environmental behavior and fate of methyl tert‐butyl ether, Environ. Toxicol. Chem., 16 (1997) 1836–1844.
  13. D. Zadaka-Amir, A. Nasser, S. Nir, Y.G. Mishael, Removal of methyl tertiary-butyl ether (MTBE) from water by polymer–zeolite composites, Microporous Mesoporous Mater., 151 (2012) 216–222.
  14. I. Levchuk, A. Bhatnagar, M. Sillanpää, Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water, Sci. Total Environ., 476 (2014) 415–433.
  15. W. Hartley, A. Englande, D. Harrington, Health risk assessment of groundwater contaminated with methyl tertiary butyl ether (MTBE), Water Sci. Technol., 39 (1999) 305–310.
  16. N. Kuburovic, M. Todorovic, V. Raicevic, A. Orlovic, L. Jovanovic, J. Nikolic, V. Kuburovic, S. Drmanic, T. Solevic, Removal of methyl tertiary butyl ether from wastewaters using photolytic, photocatalytic and microbiological degradation processes, Desalination, 213 (2007) 123–128.
  17. S. Mohebali, Degradation of methyl t-butyl ether (MTBE) by photochemical process in nanocrystalline TiO2 slurry: mechanism, by-products and carbonate ion effect, J. Environ. Chem. Eng., 1 (2013) 1070–1078.
  18. M. Mehrjouei, S. Müller, D. Möller, A review on photocatalytic ozonation used for the treatment of water and wastewater, Chem. Eng. J., 263 (2015) 209–219.
  19. A.R. Matin, S. Yousefzadeh, E. Ahmadi, A. Mahvi, M. Alimohammadi, H. Aslani, R. Nabizadeh, A comparative study of the disinfection efficacy of H2O2/ferrate and UV/H2O2/ferrate processes on inactivation of Bacillus subtilis spores by response surface methodology for modeling and optimization, Food Chem. Toxicol., 116 (2018) 129–137.
  20. S. Yousefzadeh, R. Nabizadeh, A. Mesdaghinia, S. Nasseri, P. Hezarkhani, M. Beikzadeh, M. Valadi Amin, Evaluation of disinfection efficacy of performic acid (PFA) catalyzed by sulfuric and ascorbic acids tested on Escherichia coli (ATCC, 8739), Desal. Water. Treat., 52 (2014) 3280–3289.
  21. A. Shokri, A.H. Joshagani, Using microwave along with TiO2 for degradation of 4-chloro-2-nitrophenol in aqueous environment, Russ. J. Appl. Chem., 89 (2016) 1985–1990.
  22. A. Shokri, K. Mahanpoor, Degradation of ortho-toluidine from aqueous solution by the TiO2/O3 process, Int. J. Ind. Chem., 8 (2017) 101–108.
  23. A. Shokri, The treatment of spent caustic in the wastewater of olefin units by ozonation followed by electrocoagulation process, Desal. Water Treat., 111 (2018) 173–182.
  24. E. Azizi, M. Fazlzadeh, M. Ghayebzadeh, L. Hemati, M. Beikmohammadi, H.R. Ghaffari, H.R. Zakeri, K. Sharafi, Application of advanced oxidation process (H2O2/UV) for removal of organic materials from pharmaceutical industry effluent, Environ. Prot. Eng., 43 (2017) 183–191.
  25. V. Augugliaro, M. Litter, L. Palmisano, J. Soria, The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance, J. Photochem. Photobiol., C, 7 (2006) 127–144.
  26. S. Yousefzadeh, A.R. Matin, E. Ahmadi, Z. Sabeti, M. Alimohammadi, H. Aslani, R. Nabizadeh, Response surface methodology as a tool for modeling and optimization of Bacillus subtilis spores inactivation by UV/nano-Fe0 process for safe water production, Food Chem. Toxicol., 114 (2018) 334–345.
  27. S. Li, W. Wang, F. Liang, W.X. Zhang, Heavy metal removal using nanoscale zero-valent iron (nZVI): theory and application J. Hazard. Mater., 322 (2017) 163–171.
  28. K.V.G. Ravikumar, S. Santhosh, S.V. Sudakaran, Y.V. Nancharaiah, P. Mrudula, N. Chandrasekaran, A. Mukherjee, Biogenic nano zero valent iron (Bio-nZVI) anaerobic granules for textile dye removal, J. Environ. Chem. Eng., 6 (2018) 1683–1689.
  29. H. Dong, Q. He, G. Zeng, L. Tang, L. Zhang, Y. Xie, Y. Zeng, F. Zhao, Degradation of trichloroethene by nanoscale zerovalent iron (nZVI) and nZVI activated persulfate in the absence and presence of EDTA, Chem. Eng. J., 316 (2017) 410–418.
  30. H.Y. Shu, M.C. Chang, C.C. Chang, Integration of nanosized zero-valent iron particles addition with UV/H2O2 process for purification of azo dye Acid Black 24 solution, J. Hazard. Mater., 167 (2009) 1178–1184.
  31. J. Farrell, M. Kason, N. Melitas, T. Li, Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene, Environ. Sci. Technol., 34 (2000) 514–521.
  32. A.M.E. Khalil, O. Eljamal, B.B. Saha, N. Matsunaga, Performance of nanoscale zero-valent iron in nitrate reduction from water using a laboratory-scale continuous-flow system, Chemosphere, 197 (2018) 502–512.
  33. Y. Zhang, G.B. Douglas, L. Pu, Q. Zhao, Y. Tang, W. Xu, B. Luo, W. Hong, L. Cui, Z. Ye, Zero-valent iron-facilitated reduction of nitrate: chemical kinetics and reaction pathways, Sci. Total Environ., 598 (2017) 1140–1150.
  34. Y. Mu, H.Q. Yu, J.C. Zheng, S.J. Zhang, G.P. Sheng, Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron, Chemosphere, 54 (2004) 789–794.
  35. B. Li, J. Zhu, Removal of p-chloronitrobenzene from groundwater: effectiveness and degradation mechanism of a heterogeneous nanoparticulate zero-valent iron (NZVI)- induced Fenton process, Chem. Eng. J., 255 (2014) 225–232.
  36. R. Li, Y. Gao, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Fentonlike oxidation of 2,4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst, J. Colloid Interface Sci., 438 (2015) 87–93.
  37. S.E. Mylon, Q. Sun, T.D. Waite, Process optimization in use of zero valent iron nanoparticles for oxidative transformations, Chemosphere, 81 (2010) 127–131.
  38. M. Eglal, Nanofer Zero-Valent Iron Nanoparticles: Surface Morphology, Structure and Reactivity with Contaminants, Ph.D. Dissertation, Concordia University, 2014.
  39. V. Janda, P. Vasek, J. Bizova, Z. Belohlav, Kinetic models for volatile chlorinated hydrocarbons removal by zero-valent iron, Chemosphere, 54 (2004) 917–925.
  40. H. Zhang, H.J. Choi, C.P. Huang, Treatment of landfill leachate by Fenton’s reagent in a continuous stirred tank reactor, J. Hazard. Mater., 136 (2006) 618–623.
  41. L.G. Devi, C. Munikrishnappa, B. Nagaraj, K.E. Rajashekhar, Effect of chloride and sulfate ions on the advanced photo Fenton and modified photo Fenton degradation process of Alizarin Red S, J. Mol. Catal. A: Chem., 374 (2013) 125–131.
  42. M.R. Taha, A. Ibrahim, Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent, J. Environ. Chem. Eng., 2 (2014) 1–8.
  43. A.N. Módenes, F.R. Espinoza-Quiñones, F.H. Borba, D.R. Manenti, Performance evaluation of an integrated photo-Fenton – electrocoagulation process applied to pollutant removal from tannery effluent in batch system, Chem. Eng. J., 197 (2012) 1–9.
  44. R.F. Yu, H.W. Chen, W.P. Cheng, Y.J. Lin, C.L. Huang, Monitoring of ORP, pH and DO in heterogeneous Fenton oxidation using nZVI as a catalyst for the treatment of azodye textile wastewater, J. Taiwan Inst. Chem. Eng., 45 (2014) 947–954.
  45. D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Water Resour., 51 (2013) 104–122.
  46. X.Q. Li, D.W. Elliott, W.X. Zhang, Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects, Crit. Rev. Solid State Mater. Sci., 31 (2006) 111–122.
  47. K. Acuna-Askar, A. Englande, C. Hu, G. Jin, Methyl tertiarybutyl ether (MTBE) biodegradation in batch and continuous upflow fixed-biofilm reactors, Water Sci. Technol., 42 (2000) 153–161.
  48. K. Rusevova, F.D. Kopinke, A. Georgi, Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions— influence of Fe(II)/Fe(III) ratio on catalytic performance, J. Hazard. Mater., 241 (2012) 433–440.
  49. R.F. Yu, F.H. Chi, W.P. Cheng, J.C. Chang, Application of pH, ORP, and DO monitoring to evaluate chromium(VI) removal from wastewater by the nanoscale zero-valent iron (nZVI) process, Chem. Eng. J., 255 (2014) 568–576.
  50. B. Vaferi, M. Bahmani, P. Keshavarz, D. Mowla, Experimental and theoretical analysis of the UV/H2O2 advanced oxidation processes treating aromatic hydrocarbons and MTBE from contaminated synthetic wastewaters, J. Environ. Chem. Eng., 2 (2014) 1252–1260.
  51. S. Hong, H. Zhang, C.M. Duttweiler, A.T. Lemley, Degradation of methyl tertiary-butyl ether (MTBE) by anodic Fenton treatment, J. Hazard. Mater., 144 (2007) 29–40.
  52. S. Giannakis, I. Hendaoui, M. Jovic, D. Grandjean, L.F. De Alencastro, H. Girault, C. Pulgarin, Solar photo-Fenton and UV/H2O2 processes against the antidepressant Venlafaxine in urban wastewaters and human urine. Intermediates formation and biodegradability assessment, Chem. Eng. J., 308 (2017) 492–504.
  53. H. Amanollahi, G. Moussavi, S. Giannakis, VUV/Fe(II)/H2O2 as a novel integrated process for advanced oxidation of methyl tert-butyl ether (MTBE) in water at neutral pH: process intensification and mechanistic aspects, Water. Res., 166 (2019) 1150–1161.
  54. C.B. Wang, W.X. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol., 31 (1997) 2154–2156.
  55. Y.P. Sun, X.Q. Li, W.X. Zhang, H.P. Wang, A method for the preparation of stable dispersion of zero-valent iron nanoparticles, Colloids Surf., A, 308 (2007) 60–66.
  56. Y.P. Sun, X.Q. Li, J. Cao, W.X. Zhang, H.P. Wang, Characterization of zero-valent iron nanoparticles, Adv. Colloid Interface Sci., 120 (2006) 47–56.
  57. G.N. Glavee, K.J. Klabunde, C.M. Sorensen, G.C. Hadjipanayis, Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders, Inorg. Chem., 34 (1995) 28–35.
  58. H.Y. Shu, M.C. Chang, C.C. Chen, P.E. Chen, Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution, J. Hazard. Mater., 184 (2010) 499–505.
  59. A. Eslami, S. Nasseri, B. Yadollahi, A. Mesdaghinia, F. Vaezi, R. Nabizadeh, Removal of methyl tert-butyl ether (MTBE) from contaminated water by photocatalytic process, Iran. J. Public Health, 38 (2009) 18–26.
  60. F.S. dos Santos, F.R. Lago, L. Yokoyama, F.V. Fonseca, Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15, J. Mater. Res. Technol., 6 (2017) 178–183.
  61. G. Vilardi, D. Sebastiani, S. Miliziano, N. Verdone, L. Di Palma, Heterogeneous nZVI-induced Fenton oxidation process to enhance biodegradability of excavation by-products, Chem. Eng. J., 335 (2018) 309–320.
  62. J.A. Bergendahl, T.P. Thies, Fenton’s oxidation of MTBE with zero-valent iron, Water Res., 38 (2004) 327–334.
  63. M. Bertelli, E. Selli, Kinetic analysis on the combined use of photocatalysis, H2O2 photolysis, and sonolysis in the degradation of methyl tert-butyl ether, Appl. Catal., B, 52 (2004) 205–212.
  64. F. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review, J. Hazard. Mater., 267 (2014) 194–205.
  65. S. Karthikeyan, A. Titus, A. Gnanamani, A.B. Mandal, G. Sekaran, Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes, Desalination, 281 (2011) 438–445.