References

  1. J.B. Addison, Antibiotics in sediments and run-off water from feedlots, Residue Rev., 92 (1984) 1–2.
  2. R. Kroker, Aspekte zur ausscheidung animikrobiell wirksamer subsanzen nach der chemoterapeutischen behandlung von nutztieren, Wiss. Umwelttech., 4 (1983) 305–308.
  3. D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Pharmaceuticals, hormones and other organic waste water contaminants in US streams 1999–2000: a national recoonaissance, Environ. Sci. Technol., 36 (2002) 1202–1211.
  4. F. Sacher, F.T. Lange, H.J. Brauch, I. Blankenhorn, Pharmaceuticals in groundwaters analytical methods and results of a monitoring program in Baden-Wtirttemberg, Germany, J. Chromatogr. A., 938 (2001) 199–210.
  5. K.K. Barnes, D.W. Kolpin, E.T. Furlong, S.D. Zaugg, M.T. Meyer, L.B. Barber, A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States I Groundwater, Sci. Total Environ., 402 (2008) 192–200.
  6. H. Sarmach, M. Meyer, A.B.A. Boxall, A global perspective on the use sales exposure pathways occurrence fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, 65 (2006) 725–759.
  7. H. Chang, J.Y. Hu, L.Z. Wang, B. Shao, Investigation of sulfa antibiotics in municipal wastewater treatment plants, Chin. Sci. Bull., 2 (2008) 159–164.
  8. J. Wang, A. Zhou, Y. Zhang, C. Si, Z. Chen, H. Qian, Z. Zhao, Research on the adsorption and migration of sulfa antibiotics in underground environment, Environ. Earth Sci., 75 (2016) 1252.
  9. E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics, Water Res., 43 (2009) 2419–2430.
  10. M.J. Ahmed, S.K. Theydan, Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwaveinduced KOH and K2CO3 activations, Chem. Eng. J., 211 (2012) 200–207.
  11. S.H. Kim, H.K. Shon, H.H. Ngo, Adsorption characteristics of antibiotics trimethoprirn on powdered and granular activated carbon, J. Ind. Eng. Chem., 16 (2010) 344–349.
  12. L.H. Huang, C.X. Shi, B. Zhang, S. Niu, B. Gao, Characterization of activated carbon fiber by microwave heating and the adsorption of tetracycline antibiotics, Sep. Sci. Technol., 48 (2013) 1356–1363.
  13. L. Zhang, X.Y. Song, X.Y. Liu, L. Yang, F. Pan, J. Lv, Studies on the removal of tetracycline by multi-walled carbon nanotubes, Chem. Eng. J., 178 (2011) 26–33.
  14. L. Ji, W. Chen, L. Duan, D. Zhu, Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents, Environ. Sci. Technol., 43 (2009) 2322–2327.
  15. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  16. Y.Tang, H. Guo, L. Xiao, S. Yu, N. Gao, Y. Wang, Synthesis of reduced graphene oxide/magnetitesites and investigation of their adsorption performance of fluoroquinolone antibiotics, Colloids Surf., A, 424 (2013) 74–80.
  17. Y. Fan, B. Wang, S. Yuan, X. Wu, J. Chen, L. Wang, Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal, Bioresour. Technol., 101 (2010) 7661–7664.
  18. Z. Bekci, Y. Seki, M.K. Yurdakoc, A study of equilibrium and FTIR, SEM/EDS analysis of trimethoprim adsorption onto K10, J. Mol. Struct., 827 (2007) 67–74.
  19. Q.F. Wu, Z.H. Li, H.L. Hong, K. Yin, L. Tie, Adsorption and intercalation of ciprofloxacin on montmorillonite, Appl. Clay Sci., 50 (2010) 204–211.
  20. N. Liu, M.-x. Wang, M.-m. Liu, F. Liu, L. Weng, L.K. Koopal, W.-f. Tan, Sorption of tetracycline on organo-montmorillonites, J. Hazard. Mater., 225 (2012) 28–35.
  21. A.K. Rahardjo, M.J.J. Susanto, A. Kurniawan, N. Indraswati, S. Ismadji, Modified ponorogo bentonite for the removal of ampicillin from wastewater, J. Hazard. Mater., 190 (2011) 1001–1008.
  22. J. Kang, H.J. Liu, Y.-M. Zheng, J. Qu, J.P. Chen, Application of nuclear magnetic resonance spectroscopy, UV Visible spectroscopy and kineti Fourier transform modeling for elucidation of adsorption chemistry in uptake of tetracycline by zeolite beta, J. Colloid Interface Sci., 354 (2011) 261–267.
  23. A. Martucci, M.A. Cremonini, S. Blasioli, L. Gigli, G. Gatti, L. Marchese, I. Braschi, Adsorption and reaction of sulfachloropyridazine sulfonamide antibiotic on a high silica mordenite: a structural and spectroscopic combined study, Microporous Mesoporous Mater., 170 (2013) 274–286.
  24. Z. Li, H. Hong, L. Liao, C.J. Ackley, L.A. Schulz, R.A. MacDonald, A.L. Mihelich, S.M. Emard, A mechanistic study of ciprofloxacin removal by kaolinite, Colloid Surf., B, 88 (2011) 339–344.
  25. Z. Li, L. Schulz, C. Ackley, N. Fenske, Adsorption of tetracycline on kaolinite with pH-dependent surface charges, J. Colloid Interface Sci., 351 (2010) 254–260.
  26. P.H. Chang, Z. Li, J.-S. Jean, W.-T. Jiang, C.-J. Wang, K.-H. Lin, Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite, Appl. Clay Sci., 67 (2012) 158–163.
  27. P.H. Chang, Z.H. Li, T.L. Yu, S. Munkhbayer, T.-H. Kuo, Y.-C. Hung, J.-S. Jean, K.-H. Lin, Sorptive removal of tetracycline from water by palygorskite, J. Hazard. Mater., 165 (2009) 148–155.
  28. W.B. Yang, Y.P. Lu, F.F. Zheng, X. Xue, N. Li, D. Liu, Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube, Chem. Eng. J., 179 (2012) 112–118.
  29. W. Yang, F. Zheng, X. Xue, Y. Lu, Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents, J. Colloid Interface Sci., 362 (2011) 503–509.
  30. W. Yang, F. Zheng, Y. Lu, X. Xue, N. Li, Adsorption interaction of teacyclines with porous synthetic resins, Ind. Eng. Chem. Res., 50 (2011) 13892–13898.
  31. J.R. Dominguez, T. Gonzalez, P. Palo, E.M. Cuerda-Correa, Removal of common pharmaceuticals present in surface waters by Amberlite XAD-7 acrylic-ester-resin: influence of pH and presence of other drugs, Desalination, 269 (2011) 231–238.
  32. Q. Zhou, M.C. Zhang, C.D. Shuang, Z.Q. Li, A.M. Li, Preparation of a novel magnetic powder resin for the rapid removal of tetracycline in the aquatic environment, Chin. Chem. Lett., 23 (2012) 745–748.
  33. S.M. Rivera-Jimenez, A.J. Hernandez-Maldonado, Nickel(II) MCM-41: a novel sorbent for the removal of Naproxen from water, Microporous Mesoporous Mater., 116 (2008) 246–252.
  34. B.K. Vu, O. Snisarenko, H.S. Lee, E.W. Chin, Adsorption of tetracycline on La-impregnated MCM-41 materials, Environ. Technol., 31 (2010) 233–241.
  35. B.K. Vu, E.W. Shin, O. Snisarenko, W.S. Jeong, H.S. Lee, Removal of the antibiotic tetracycline by SBA-15, Korean J. Chem., 27 (2010) 116–120.
  36. M. Liu, L.A. Hou, S. Yu, B. Xi, Y. Zhao, X. Xia, MCM-41 impregn with A zeolite precursor: synthesis, characterization and tetracycline antibiotics removal from aqueous solution, Chem. Eng. J., 223 (2013) 678–687.
  37. S. Shi, Y.W. Fan, Y.M. Huang, Facile low temperature hydrothermal synthesis of magnetic mesoporous carbon nanocomposite for adsorption of ciprofloxacin antibiotics, Ind. Eng. Chem. Res., 52 (2013) 2604–2612.
  38. M. Brigante, P.C. Schulz, Cerium(IV) oxide: synthesis in alkaline and acidic media, characterization and adsorption properties, Chem. Eng. J., 191 (2012) 563–570.
  39. M. Brigante, P.C. Schulz, Adsorption of the antibiotic minocycline on cerium(IV) oxide: erect of pH, ionic strength and temperature, Microporous Mesoporous Mater., 156 (2012) 138–144.
  40. A.U. Rajapaksha, M. Vithanaue, S.S. Lee, D.-C. Seo, D.C.W. Tsang, Y.S. Ok, Steam activation of biochars facilitates kinetics and pH-resili-ence of sulfamethazine sorption, J. Soils Sediments, 160 (2016) 3.
  41. F. Lian, B.B. Sun, B.S. Xing, Physicochemical properties of herb-residue biochar and its sorption to ionizable antibioticsulfamethoxazole, Chem. Eng. J., 248 (2014) 128–134.
  42. L.C. Duan, F.H. Gong, Y.X. Ji, Adsorption properties of antibiotic sulfonamide from fly ash in thermal power plant, J. Environ. Eng., 8 (2014) 2231–2236.
  43. H. Zheng, Z. Wang, Y. Zhao, S. Herbert, B. Xing, Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures, Environ. Pollut., 181 (2013) 60–67.
  44. C. Adams, Y. Wang, K. Loftin, M. Meyer, Removal of antibiotics from surface and distilled water in conventional water treatment processes, J. Environ. Eng., 128 (2002) 253–260.
  45. X.L. Bao, Z.M. Qiang, W.W. Wu, W.C. Lin, Study on adsorption and removal of sulfa antibiotics in water by magnetic nanocomposite CoFeM48, J. Environ. Sci., 33 (2013) 401–407.
  46. C. Zhang, Y. Feng, Y.W. Liu, D.M. Cheng, Y. Zheng, Z.J. Li, The degradation of typical antibiotics and their effects on soil bacterial diversity in spinach soil, Sci. Agric. Sin., 51 (2018) 3736–3749 (in Chinese).
  47. S.C. Shao, Y.Y. Hu, J.H. Cheng, Y. Chen, Degradation of oxytetracycline (OTC) and nitrogen conversion characteristics using a novel strain, Chem. Eng. J., 354 (2018) 758–766.
  48. B. Jiang, A. Li, D. Cui, R. Cai, F. Ma, Y. Wang, Biodegradation and metabolic pathway of sulfamethoxazole by Pseudomonas psychrophila HA-4, a newly isolated cold-adapted sulfamethoxazole-degrading bacterium, Appl. Microbiol. Biotechnol., 98 (2014) 4671–4681.
  49. H. Gauthier, V. Yargeau, D.G. Cooper, Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism, Sci. Total Environ., 408 (2010) 1701–1706.
  50. S. Larcher, V. Yargeau, Biodegradation of sulfamethoxazole by individual and mixed bacteria, Appl. Microbiol. Biotechnol., 91 (2011) 211–218.
  51. R. Alexy, T. Kumpel, K. Kummerer, Assessment of degradation of 18 antibiotics in the Closed Bottle Test, Chemosphere, 57 (2004) 505–512.
  52. A. Al-Ahmad, F.D. Daschner, K. Kummerer, Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria, Arch. Environ. Contam. Toxicol., 37 (1999) 158–163.
  53. S. Gartiser, E. Urich, R. Alexy, K. Kummerer, Ultimate biodegradation and elimination of antibiotics in inherent tests, Chemosphere, 67 (2007) 604–613.
  54. C.M. Kao, S.C. Chen, J.Y. Wang, Remediation of PCEcontaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies, Water Res., 37 (2003) 27–38.
  55. L. Vesela, J. Nemecek, M. Siglova, M. Kubal, The biofiltration permeable reactive barrier: practical experience from synthesia, Int. Biodeterior. Biodegrad., 58 (2006) 224–230.
  56. D. Zamfirescu, P. Grathwohl, Occurrence and attenuation of specific; organic; compounds in the groundwater plume at a former gasworks site, J. Contam. Hydrol., 53 (2001) 407–427.
  57. Y.F. Zhang, Y. Xia, Y.M. Luo, X. Liu, An adsorbent for removing antibiotics in water, preparation method and application: China, 60 (2012) 7–8.
  58. Y. Xu, M. Lu, Bioremediation of crude oil-contaminated soil: comparison of different biostimulation and bioaugmentation treatments, J. Hazard. Mater., 183 (2010) 395–401.
  59. Z.F. Liu, X. Li, Optimization experiment of Cr(VI) conditions in modified peanut shell adsorption wastewater, Anhui Agric. Sci., 38 (2010) 16498–16500.
  60. M.H. Bilir, N. Sakalar, B. Acemiog lu, E. Baran, M.H. Alma, Sorption of remazol brilliant blue R onto polyurethanetype foam prepared from peanut shell, J. Appl. Polym. Sci., 127 (2012) 4340–4351.
  61. W. Lochananon, D. Chatsiriwech, Effect of phosphoric acid concentration on properties of peanut shell adsorbents, J. Ind. Eng. Chem., 14 (2008) 84–88.
  62. F. Belaib, M. Azzedine, B. Boubeker, M. Abdeslam-Hassen, Experimental study of oxytetracycline retention by adsorption onto polyaniline coated peanut shells, Int. J. Hydrogen Energy., 39 (2014) 1511–1515.
  63. T.S. Chen, Manufacture and Application of Microbial Culture Medium, China Agricultural Press, Beijing, 1995.
  64. G. Uehar, G.P. Gillman, Charge characteristics of soils with variable and permanent charge minerals theory, Soil Sci. Soc. Am. J., 44 (1980) 250–252.
  65. N. Xu, Degradation of Immobilized Microorganisms in Petroleum Contaminated Soil, China University of Petroleum, 2011.
  66. Y. Chen, Preparation and Characterization of Porous Materials, University of Science and Technology of China Press, Beijing, 2010.
  67. Z. Qiang, C. Adams, Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics, Water Res., 38 (2004) 2874–2890.
  68. C. Lin, C. Chang, W. Lin, Migration behavior and separation of sulfonamides in capillary zone electrophoresis III. Citrate buffer as a background electrolyte, J. Chromatogr. A, 768 (1997) 105–112.
  69. L.Z. Benet, J.E. Goyan, Potentiometric determination of dissociation constants, J. Pharm. Sci., 56 (1967) 665–680.
  70. B.E. Rittmann, P.L. Mccarty. Environmental Biotechnology: Principles and Applications, Tsinghua University Press, Beijing, 2012, pp. 11–12.
  71. R.S. Vieira, L.S.M. Oliveira, E. Guihal, E. Rodríguez-Castellón, M.M. Beppu, Copper mercury and chromium adsorption on natural and crosslinked chitosan films: an XPS investigation of mechanism, Colloids Surf., A, 374 (2011) 108–114.
  72. S.B. Deng, Y.P. Ting, Characterization of PEI-modified biomass and biosorption of Cu(II), Ph(II) and Ni(II), Water Res., 39 (2005) 2167–2177.
  73. A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, F.J. Stadler, Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment, Chem. Eng. J., 334 (2018) 462–478.
  74. A.A. Alqadami, M. Naushad, Z.A. Alothman, A.A. Ghfar, Novel metal–organic framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal ions from aqueous environment, ACS Appl. Mater. Interfaces, 9 (2017) 36026–36037.
  75. S.D. Gardner, C.S.K. Singamsetty, G.L. Booth, G.-R. He, C.U. Pittman Jr., Surface characterization of carbon fibers using angle-resolved XPS and ISS, Carbon, 33 (1995) 587–950.
  76. C.M. Yang, K. Kaneko, M. Yudasaka, S. Iijima, Surface chemistry and pore structure of purified HiPco single-walled carbon nanotube aggregates, Physica B, 323 (2002) 140–142.
  77. A. Swiatkowski, M. Pakula, S. Biniak, M. Walczyk, Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(II)ions, Carbon, 42 (2004) 3057–3069.
  78. K. Yang, C. Meng, L.L. Lin, X.Y. Peng, X. Chen, X.X. Wang, W.W. Dai, X.Z. Fu. A heterostructured TiO2-C3N4 support for gold catalysts: a superior preferential oxidation of CO in the presence of H2 under visible light irradiation and without visible light irradiation, Catal. Sci. Technol., 6 (2016) 829–839.
  79. G. Sharma, M. Naushad, A. Kumar, S. Rana, S. Sharma, A. Bhatnagar, F.J. Stadler, A.A. Ghfar, M.R. Khan, Process Saf. Environ. Prot., 109 (2017) 301–310.
  80. E. Daneshvar, A. Vazirzadeh, A. Niazi, M. Kousha, M. Naushad, A. Bhatnagar, J. Cleaner Prod., 152 (2017) 443–453.
  81. A.B. Albadarin, M. Charara, B.M.A. Tarboush, M.N.M. Ahmad, T.A. Kurniawan, M. Naushad, G.M. Walker, C. Mangwandi, Mechanism analysis of tartrazine biosorption onto masau stones; a low cost by-product from semi-arid regions, J. Mol. Liq., 242 (2017) 478–483.
  82. G.Z. Kyzas, A. Koltsakidou, S.G. Nanaki, D.N. Bikiaris, D.A. Lambropoulou, Removal of beta-blockers from aqueous media by adsorption onto graphene oxide, Sci. Total Environ., 537 (2015) 411–420.
  83. M. Naushad, T. Ahamad, B.M. Al-Maswari, A.A. Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J., 330 (2017), 1351–1360.
  84. S. Somasundaram, K. Sekar, V.K. Gupta, S. Ganesan, Synthesis and characterization of mesoporous activated carbon from rice husk for adsorption of glycine from alcohol-aqueous mixture, J. Mol. Liq., 177 (2013) 416–425.
  85. T. Calvete, E.C. Lima, N.F. Cardoso, S.L.P. Dias, E.S. Ribeiro, Removal of brilliant green dye from aqueous solutions using home made activated carbons, Clean Soil, Air, Water, 38 (2015) 521–532.
  86. M. Papageorgiou, S.Nanaki, G. Kyzas, C. Koulouktsi, D. Bikiaris, D. Lambropoulou, Novel isocyanate-modified carrageenan polymer materials: preparation, characterization and application adsorbent materials of pharmaceuticals, Polymers, 9 (2017) 595.
  87. M. Naushad, M.R. Khan, Z.A. Alothman, A.H. Al-Muhtaseb, M.R. Awual, A.A. Alqadami, Water purification using cost effective material prepared from agricultural waste: kinetics, isotherms, and thermodynamic studies, Clean Soil Air Water, 44 (2016) 1036–1045.
  88. B. Smith, Infrared Spectral Interpretation: A Systematic Approach, CRC Press, 1998.
  89. F.A. Pavan, I.S. Lima, E.C. Lima, C. Airoldi, Y. Gushikem, Use of ponkan mandarin peels as biosorbent for toxic metals uptake from aqueous solutions, J. Hazard. Mater., 137 (2006) 527–533.
  90. J.C.P. Vaghetti, E.C. Lima, B. Royer, N.F. Cardoso, B. Martins, T. Carvete, Pecan nutshell as biosorbent to remove toxic metals from aqueous solution, Sep. Sci. Technol., 44 (2009) 615–644.
  91. N.F. Cardoso, R.B. Pinto, E.C. Lima, T. Calvete, C.V. Amavisca, B. Royer, M.L. Cunha, T.H.M. Fernandes, I.S. Pinto, Removal of remazol black B textile dye from aqueous solution by adsorption, Desalination, 269 (2011) 92–103.
  92. X. Wang, X. Wang, M. Liu, Y. Bu, J. Zhang, J. Chen, J. Zhao, et al. Adsorption-synergic bio-degradation of diesel oil in synthetic seawater by acclima-ted strains immobilized on multifunctional material, Mar. Pollut. Bull., 92 (2011) 195–200.