References

  1. L. Gianfreda, G. Iamarino, R. Scelza, M.A. Rao, Oxidative catalysts for the transformation of phenolic pollutants: a brief review, Biocatal. Biotransform., 24 (2006) 177–187.
  2. M.V. Dozzi, A. Saccomanni, E. Selli, Cr(VI) photocatalytic reduction: effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2, J. Hazard. Mater., 211–212 (2012) 188–195.
  3. R. Qiu, D. Zhang, Z. Diao, X. Huang, C. He, M. Jean-Louis, Y. Xiong, Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation, Water Res., 46 (2012) 2299–2306.
  4. X.-R. Xu, H.-B. Li, J.-D. Gu, Simultaneous decontamination of hexavalent chromium and methyl tert-butyl ether by UV/TiO2 process, Chemosphere, 63 (2006) 254–260.
  5. C.M. Alonso-Hernández, J. Bernal-Castillo, Y. Bolanos-Alvarez, M. Gómez-Batista, M. Diaz-Asencio, Heavy metal content of bottom ashes from a fuel oil power plant and oil refinery in Cuba, Fuel, 90 (2011) 2820–2823.
  6. E. D’Angelo, G. Zeigler, E.G. Beck, J. Grove, F. Sikora, Arsenic species in broiler (Gallus gallus domesticus) litter, soils, maize (Zea mays L.), and groundwater from litter-amended fields, Sci. Total Environ., 438 (2012) 286–292.
  7. V.K. Sharma, R. Zboril, R.S. Varma, Ferrates: greener oxidants with multimodal action in water treatment technologies., Acc. Chem. Res., 48 (2015) 182–191.
  8. R. Prucek, J. Tuček, J. Kolařík, I. Hušková, J. Filip, R.S. Varma, V.K. Sharma, R. Zbořil, Ferrate(VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides, Environ. Sci. Technol., 49 (2015) 2319–2327.
  9. R.P. Kralchevska, R. Prucek, J. Kolařík, J. Tuček, L. Machala, J. Filip, V.K. Sharma, R. Zbořil, Remarkable efficiency of phosphate removal: ferrate(VI)-induced in situ sorption on core-shell nanoparticles, Water Res., 103 (2016) 83–91.
  10. B. Yang, R.S. Kookana, M. Williams, G.-G. Ying, J. Du, H. Doan, A. Kumar, Oxidation of ciprofloxacin and enrofloxacin by ferrate(VI): products identification, and toxicity evaluation, J. Hazard. Mater., 320 (2016) 296–303.
  11. W. Gan, V.K. Sharma, X. Zhang, L. Yang, X. Yang, Investigation of disinfection byproducts formation in ferrate(VI) pre-oxidation of NOM and its model compounds followed by chlorination, J. Hazard. Mater., 292 (2015) 197–204.
  12. M. Feng, L. Cizmas, Z. Wang, V.K. Sharma, Synergistic effect of aqueous removal of fluoroquinolones by a combined use of peroxymonosulfate and ferrate(VI), Chemosphere, 177 (2017) 144–148.
  13. M. Feng, L. Cizmas, Z. Wang, V.K. Sharma, Activation of ferrate(VI) by ammonia in oxidation of flumequine: Kinetics, transformation products, and antibacterial activity assessment, Chem. Eng. J., 323 (2017) 584–591.
  14. K. Manoli, G. Nakhla, M. Feng, V.K. Sharma, A.K. Ray, Silica gel-enhanced oxidation of caffeine by ferrate(VI), Chem. Eng. J., 330 (2017) 987–994.
  15. X. Sun, K. Zu, H. Liang, L. Sun, L. Zhang, C. Wang, V.K. Sharma, Electrochemical synthesis of ferrate(VI) using sponge iron anode and oxidative transformations of antibiotic and pesticide, J. Hazard. Mater., 344 (2018) 1155–1164.
  16. S.A. Baig, T. Sheng, Y. Hu, J. Xu, X. Xu, Arsenic removal from natural water using low cost granulated adsorbents: a review, Clean Soil Air Water, 43 (2015) 13–26.
  17. M.D. Johnson, B.B. Lorenz, Antimony remediation using ferrate(VI), Sep. Sci. Technol., 50 (2015) 1611–1615.
  18. Y. Lee, I.H. Um, J. Yoon, Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation, Environ. Sci. Technol., 37 (2003) 5750–5756.
  19. J.-Q. Jiang, H.B.P. Durai, M. Petri, T. Grummt, R. Winzenbacher, Drinking water treatment by ferrate(VI) and toxicity assessment of the treated water, Desal. Water Treat., 57 (2016) 26369–26375.
  20. C. Li, X.Z. Li, N. Graham, A study of the preparation and reactivity of potassium ferrate, Chemosphere, 61 (2005) 537–543.
  21. Y. Wei, Y. Wang, C. Liu, Preparation of potassium ferrate from spent steel pickling liquid, Metals (Basel)., 5 (2015) 1770–1787.
  22. U. Schwertmann, R.M. Cornell, Ferrihydrite, In: Iron Oxides in the Laboratory Preparation Characterization, 2nd ed, Wiley-VCH, Weinheim, Germany, 2000, pp. 103–112.
  23. D. Wu, B.J. Purnomo, S. Sun, As and Sb speciation in relation with physico-chemical characteristics of hydrothermal waters in Java and Bali, J. Geochem. Explor., 173 (2017) 85–91.
  24. D. Wu, T. Pichler, Simultaneous speciation analysis of As, Sb and Se redox couples by SF-ICP-MS coupled to HPLC, Anal. Methods, 6 (2014) 5112–5119.
  25. D. Wu, S. Sun, Speciation analysis of As, Sb and Se, Trends Environ. Anal. Chem., 11 (2016) 9–22.
  26. J.D. Rush, J.E. Cyr, Z. Zhao, B.H.J. Bielski, The oxidation of phenol by ferrate(VI) and ferrate(V). A pulse radiolysis and stopped-flow study, Free Radical Res., 22 (1995) 349–360.
  27. X. Sun, Q. Zhang, H. Liang, L. Ying, M. Xiangxu, V.K. Sharma, Ferrate(VI) as a greener oxidant: electrochemical generation and treatment of phenol, J. Hazard. Mater., 319 (2016) 130–136.
  28. V.K. Sharma, Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism, Coord. Chem. Rev., 257 (2013) 495–510.
  29. D. Wu, Y. Xiong, M. He, S. Yang, J. Cai, Z. Wu, S. Sun, X. Chen, W.D. Wu, Determination of phenol degradation in chloride ion rich water by ferrate using a chromatographic method in combination with on-line mass spectrometry analysis, Anal. Methods, 11 (2019) 4651–4658.
  30. T. Pigot, V. Peings, Mechanism for the oxidation of phenol by sulfatoferrate(VI): comparison with various oxidants, J. Environ. Manage., 157 (2015) 287–296.
  31. M. Fan, N. Li, C. Chuang, Y. Shi, R.C. Brown, J. van Leeuwen, K. Banerjec, J. Qu, H. Chen, Arsenite oxidation by ferrate in aqueous solution, Trace Met. Other Contam. Environ., 9 (2007) 623–639.
  32. P. Qi, T. Pichler, Closer look at As(III) and As(V) adsorption onto ferrihydrite under competitive conditions, Langmuir, 30 (2014) 11110–11116.
  33. M. Kosmulski, Surface Charging and Points of Zero Charge, Surfactant Science Series, Vol. 145, CRC Press, Baco Raton, Fl, 2009, pp. 301–304.
  34. R. Prucek, J. Tuček, J. Kolařík, J. Filip, Z. Marušák, V.K. Sharma, R. Zbořil, Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles., Environ. Sci. Technol., 47 (2013) 3283–3292.
  35. A.N. Pham, A.L. Rose, A.J. Feitz, T.D. Waite, Kinetics of Fe(III) precipitation in aqueous solutions at pH 6.0–9.5 and 25°C, Geochim. Cosmochim. Acta, 70 (2006) 640–650.
  36. L. Mino, A. Zecchina, G. Martra, A.M. Rossi, G. Spoto, A surface science approach to TiO2 P25 photocatalysis: an in situ FTIR study of phenol photodegradation at controlled water coverages from sub-monolayer to multilayer, Appl. Catal., B, 196 (2016) 135–141.
  37. Y. Jia, L. Xu, X. Wang, G.P. Demopoulos, Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite, Geochim. Cosmochim. Acta, 71 (2007) 1643–1654.
  38. J. Cai, X. Wang, Y. Zhou, L. Jiang, C. Wang, Selective adsorption of arsenate and the reversible structure transformation of the mesoporous metal–organic framework MIL-100 (Fe), Phys. Chem. Chem. Phys., 18 (2016) 10864–10867.
  39. B. Lan, Y. Wang, X. Wang, X. Zhou, Y. Kang, L. Li, Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate, Chem. Eng. J., 292 (2016) 389–397.
  40. M. Jian, H. Wang, R. Liu, J. Qu, H. Wang, X. Zhang, Selfassembled one-dimensional MnO2@zeolitic imidazolate framework-8 nanostructures for highly efficient arsenite removal, Environ. Sci. Nano, 3 (2016) 1186–1194.
  41. D. Wu, S.-P. Sun, M. He, Z. Wu, J. Xiao, X.D. Chen, W.D. Wu, As(V) and Sb(V) co-adsorption onto ferrihydrite: synergistic effect of Sb(V) on As(V) under competitive conditions, Environ. Sci. Pollut. Res. Int., 25 (2018) 14585–14594.