References
- J. Smit, H.P.J. Wijn, Ferrites, Philips Technical Library,
Eindhoven, The Netherlands, 1959.
- B. Pacakova, S. Kubickova, A. Reznickova, D. Niznansky,
J. Vejpravova, Spinel Ferrite Nanoparticles: Correlation of Structure
and Magnetism, Magnetic Spinels - Synthesis, Properties
and Applications, IntechOpen, 2017. Available at: https://
www.intechopen.com/books/magnetic-spinels-synthesisproperties-and-applications/spinel-ferrite-nanoparticlescorrelation-
of-structure-and-magnetism (accessed 21 October
2019).
- M.A. Iqbel, M.U. Islam, I. Ali, M.A. Khan, I. Sadiq, I. Ali,
High frequency dielectric properties of Eu3+-substituted Li–Mg ferrites synthesized by sol–gel auto-combustion method,
J. Alloys Compd., 586 (2014) 404–410.
- A.S. Teja, P.Y. Koh, Synthesis, properties, and applications
of magnetic iron oxide nanoparticles, Prog. Cryst. Growth
Charact. Mater., 55 (2009) 22–45.
- C.N.R. Rao, H.C. Mult, A. Müller, A.K. Cheetham, The
Chemistry of Nanomaterials: Synthesis, Properties and Applications,
Wiley-VCH, Weinheim, Germany, 2004.
- A.K. Haghi, A.K. Zachariah, N. Kalarikkal, Nanomaterials
Synthesis, Characterization, and Applications, S. Thomas,
M. Sebastien, A. George, Y. Weimin, Eds., Advances in
Nanoscience and Nanotechnology, Vol. 3, Apple Academic
Press, New Jersey, USA, 2013.
- A. Roy, J. Bhattacharya, Nanotechnology in Industrial
Wastewater Treatment, IWA Publishing, London, 2015.
- S. Kanagesan, M. Hashim, A.B. Aziz, I. Ismail, S. Tamilselvan,
N.B. Alitheen, M.K. Swamy, B.P.C. Rao, Evaluation of antioxidant
and cytotoxicity activities of copper ferrite (CuFe2O4) and zinc
ferrite (ZnFe2O4) nanoparticles synthesized by sol-gel selfcombustion
method, Appl. Sci., 6 (2016) 184–196.
- B.I. Kharisov, H.V.R. Dias, O.V. Kharissova, Mini-review:
ferrite nanoparticles in the catalysis, Arabian J. Chem., 12 (2019)
1234–1246.
- A.M. Gutierrez, T.D. Dziubla, J.Z. Hilt, Recent advances on iron
oxide magnetic nanoparticles as sorbents of organic pollutants
in water and wastewater treatment, Rev. Environ. Health,
32 (2017) 111–117.
- M.A.A. Eldeen, A.A.M.E. Sayed, D.M.S.A. Salem, G.M.E. Zokm,
The uptake of Eriochrome Black T dye from aqueous solutions
utilizing waste activated sludge: adsorption process optimization
using factorial design, Egypt. J. of Aquat. Res.,
44 (2018) 179–186.
- K.R. Kunduru, M. Nazarkovsky, S. Farah, R.P. Pawar, A. Basu,
S. Pawar, A.J. Domb, Nanotechnology for Water Purification:
Applications of Nanotechnology Methods in Wastewater
Treatment, M.G. Alexandru, Ed., Water Purification Nanotechnology
in the Agri-Food Industry, Academic Press, Cambridge,
2017, pp. 33–74.
- P. Sukanchan, Application of Nanotechnology in Water
Treatment, Wastewater Treatment and Other Domains of
Environmental Engineering Science–A Broad Scientific
Perspective and Critical Review, A.K. Mishra, C.M. Hussain,
Eds., Nanotechnology for Sustainable Water Resources,
Scrivener Publishing LLC, Beverly, USA, 2018, pp. 1–39.
- A. Figoli, M.S.S. Dorraji, A.R.A. Ghadim, Application of
Nanotechnology in Drinking Water Purification, M.G. Alexandru,
Ed., Water Purification, Academic Press, New Jersey, USA,
2017, pp. 119–167.
- D.H.K. Reddy, Y.S. Yun, Spinel ferrite magnetic adsorbents:
alternative future materials for water purification, Coord.
Chem. Rev., 315 (2016) 90–111.
- E.K. Aziz, R. Abdelmajid, L.M. Rachid, E.H. Mohammadine,
Adsorptive removal of anionic dye from aqueous solutions
using powdered and calcined vegetables wastes as low-cost
adsorbent, Arabian J. Basic Appl. Sci., 25 (2018) 93–102.
- G. Sriram, U.T. Uthapp, R.M. Rego, M. Kigga, T. Kumeria,
H.Y. Jung, M.D. Kurkuri, Ceria decorated porous diatomxerogel
as an effective adsorbent for the efficient removal of
Eriochrome Black T, Chemosphere, 238 (2020) 124692.
- G. Sriram, M.P. Bhat, M. Kigga, U.T. Uthappa, H.Y. Jung,
T. Kumeria, M.D. Kurkuri, Amine activated diatom xerogel
hybrid material for efficient removal of hazardous dye, Mater.
Chem. Phys., 235 (2019) 121738.
- M. Farid, A. Asma, K. Maryam, Efficient removal of Eriochrome
Black T from aqueous solution using NiFe2O4 magnetic
nanoparticles, J. Environ. Health Sci. Eng., 12 (2014) 1–7.
- D.M.M. Aguila, M.V. Ligaray, Adsorption of Eriochrome Black
T on MnO2-coated zeolite, Int. J. Environ. Sci. Dev., 6 (2015)
824–827.
- M. Ahmaruzzamana, M.J.K. Ahmed, S. Begum, Remediation of
Eriochrome Black T-contaminated aqueous solutions utilizing
H3PO4-modified berry leaves as a non-conventional adsorbent,
Desal. Water Treat., 56 (2015) 1–13.
- O.A. Attallah, M.A. Al-Ghobashy, M. Nebsen, M.Y. Salem,
Removal of cationic and anionic dyes from aqueous solution
with magnetite/pectin and magnetite/silica/pectin hybrid
nanocomposites: kinetic, isotherm and mechanism analysis,
RSC Adv., 6 (2016) 11461–11480.
- B. Saha, S. Das, J. Saikia, G. Das, Preferential and enhanced
adsorption of different dyes on iron oxide nanoparticles:
a comparative study, J. Phys. Chem. C, 115 (2011) 8024–8033.
- L.B. Tahar, M.H. Oueslati, M.J.A. Abualreish. Synthesis of
magnetite derivatives nanoparticles and their application for
the removal of chromium(VI) from aqueous solutions, J. Colloid
Interface Sci., 512 (2018) 115–126.
- D. Zins, V. Cabuil, R. Massart, New aqueous magnetic fluids,
J. Mol. Liq., 83 (1999) 217–232.
- X’Pert HighScore Plus V2, PANAlytical, P.V, Almelo, The
Netherlands, 2003.
- J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey
and some new results in the determination of crystallite size,
J. Appl. Crystallogr., 11 (1978) 102–113.
- S.A. Albuquerque, J.D. Ardisson, W.A.A. Macedo, Nanosized
powders of NiZn ferrite: synthesis, structure, and magnetism,
J. Appl. Phys., 87 (2000) 4352–4357.
- H. Huili, B. Grindi, G. Viau, L.B. Tahar, Effect of cobalt
substitution on the structure, electrical, and magnetic properties
of nanorcrystalline Ni0.5Zn0.5Fe2O4 prepared by the polyol
process, Ceram. Int., 40 (2014) 16235–16244.
- R. Kato, J. Rolfe, Vibration frequencies of NO2– and NO3– ions in
KBr crystals, J. Chem. Phys., 47 (1967) 901–1910.
- R.M. Cornell, U. Schwertmann, The Iron Oxides, 2nd ed., VCH,
Weimheim, 2003.
- M. Kosmulski, pH-dependent surface charging and points
of zero charge II. Update, J Colloid Interface Sci., 275 (2004)
214–224.
- M.P. Pileni, Magnetic fluids: fabrication, magnetic properties,
and organization of nanocrystals, Adv. Funct. Mater., 11 (2001)
323–336.
- A. Demortière, P. Panissod, B.P. Pichon, G. Pourroy, D. Guillon,
B. Donnio, S.B. Colin, Size-dependent properties of magnetic
iron oxide nanocrystals, Nanoscale, 3 (2011) 225–232.
- M. Artus, L.B. Tahar, F. Herbst, L. Smiri, F. Villain, N. Yaacoub,
J.M. Grenèche, S. Ammar, F. Fiévet, Size-dependent magnetic
properties of CoFe2O4 nanoparticles prepared in polyol, J. Phys.
Condens. Matter, 23 (2011) 506001 (9pp).
- J.Z. Zhang, Z.L. Wang, B.C. Chakoumakos, J.S. Yin,
Temperature dependence of cation distribution and oxidation
state in magnetic Mn-Fe ferrite nanocrystals, J. Am. Chem. Soc.,
120 (1998) 1800–1804.
- D. Ortega, E.V. Fort, D.A. Garcia, R. Garcia, R. Litrán, C. Barrera-
Solano, M.R. del-Solar, M. Domínguez, Size and surface effects
in the magnetic properties of maghemite and magnetite coated
nanoparticles, Philos. Trans. R. Soc. London, Ser. A, 368 (2010)
4407–4418.
- M.A. Gilleo, Superexchange interaction in ferrimagnetic garnets
and spinels which contain randomly incomplete linkages,
J. Phys.Chem. Solids, 13 (1960) 33–39.
- R. Gong, J. Ye, W. Dai, X. Yan, J. Hu, X. Hu, S. Li, H. Huang,
Adsorptive removal of methyl orange and methylene blue from
aqueous solution with finger-citron-residue-based activated
carbon, Ind. Eng. Chem. Res., 52 (2013) 14297–14303.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem, 34 (1999) 451–465.
- M.D.G. De Luna, E.D. Flores, D.A.D. Genuino, C.M. Futalan,
M.W. Wan, Adsorption of Eriochrome Black T (EBT) dye using
activated carbon prepared from waste rice hulls-optimization,
isotherm and kinetic studies, J. Taiwan Inst. Chem. Eng.,
44 (2013) 646–653.