References

  1. W.V. Riel, E.V. Bueren, J. Langeveld, P. Herder, Decision-making for sewer asset management: theory and practice, Urban Water J., 13 (2017) 57–68.
  2. J. Ellis, B. Chocat, S. Fujita, J. Marsalek, W. Rauch, Urban drainage: a multilingual glossary, Water Intell. Online, 5 (2015) 528.
  3. J.P. Rodrigue, C. Comtois, B. Slack, The Geography of Transport Systems, Routledge, New York, NY, USA, 2013.
  4. T. Laakso, S. Ahopelto, T. Lampola, T. Kokkonen, R. Vahala, Estimating water and wastewater pipe failure consequences and the most detrimental failure modes, Water Sci. Technol. Water Supply, 18 (2018) 901–909.
  5. E.T. Mustafa, B.T. Goksen, C. Tulin, A. Ersin, Feasible sanitary sewer network generation using graph theory, Adv. Civ. Eng., 2019 (2019) 1–15.
  6. A. Bavelas, Communication patterns in task-oriented groups, J. Acoust. Soc. Am., 22 (1950) 725–730.
  7. A. Shimbel, Structural parameters of communication networks, Bull. Math. Biophys., 15 (1953) 501–507.
  8. L. Katz, A new status index derived from sociometric analysis, Psychometrika, 18 (1953) 39–43.
  9. L.C. Freeman, Centrality in social networks conceptual clarification, Soc. Networks, 1 (1978) 215–239.
  10. K. Stephenson, M. Zelen, Rethinking centrality: methods and examples, Soc. Networks, 11 (1989) 1–37.
  11. L.C. Freeman, S.P. Borgatti, D.R. White, Centrality in valued graphs: a measure of betweenness based on network flow, Soc. Networks, 13 (1991) 141–154.
  12. D.R. White, S.P. Borgatti, Betweenness centrality measures for directed graphs, Soc. Networks, 16 (1994) 335–346.
  13. M.G. Everett, S.P. Borgatti, The centrality of groups and classes, J. Math. Sociol, 23 (1999) 181–201.
  14. E. Estrada, J.A. Rodriguez-Velazquez, Subgraph centrality in complex networks, Phys. Rev., 71 (2005) 056103 1–9.
  15. J.A. Rodriguez, E. Estrada, A. Gutierrez, Functional centrality in graphs, Linear Multilinear Algebra, 55 (2006) 293–302.
  16. P. Bonacich, Some unique properties of eigenvector centrality, Soc. Networks, 29 (2007) 555–564.
  17. T. Opsahl, F. Agneessens, J. Skvoretz, Node centrality in weighted networks, Generalizing degree and shortest paths, Soc. Networks, 32 (2010) 245–251.
  18. K.E. Joyce, P.J. Laurienti, J.H. Burdette, S. Hayasaka, A new measure of centrality for brain networks, PLoS One, 5 (2010) 1–13.
  19. M. Kitsak, L.K. Gallos, S. Havlin, F. Liljeros, Identification of influential spreaders in complex networks, Nat. Phys., 6 (2010) 888–893.
  20. A. Zeng, C.J. Zhang, Ranking spreaders by decomposing complex networks, Phys. Lett. A, 377 (2013) 1031–1035.
  21. J. Bae, S. Kim, Identifying and ranking influential spreaders in complex networks by neighborhood coreness, Physica A, 395 (2014) 549–559.
  22. Y. Liu, M. Tang, T. Zhou, Y. Do, Identify influential spreaders in complex networks: the role of neighborhood, Physica A, 452 (2015) 289–298.
  23. J. Wang, X. Hou, K. Li, Y. Ding, A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks, Physica A, 475 (2017) 88–105.
  24. J. Nieminen, On the centrality in a graph, Scand. J. Psychol., 15 (1974) 322–336.
  25. A. Bavelas, A mathematical model for group structures, Appl. Anthropol., 7 (1948) 16–30.
  26. H.M. Fussel, R.J. Klein, Climate change vulnerability assessments: an evolution of conceptual thinking, Clim. Change, 75 (2006) 301–329.
  27. P. Timmerman, Vulnerability, Resilience and the Collapse of Society: A Review of Models and Possible Climatic Applications, Institute for Environmental Studies, University of Toronto, Toronto, ON, Canada, 1981.
  28. H. Li, P. Zhang, Y. Cheng, Concepts and assessment methods of vulnerability, Prog. Geogr., 27 (2008) 18–25.
  29. M.J. Metzger, R. Leemans, D. Schroter, A multidisciplinary multi-scale framework for assessing vulnerabilities to global change, Int. J. Appl. Earth Obs. Geoinf., 7 (2005) 253–267.
  30. B.C. Ezell, J.V. Farr, I. Wiese, Infrastructure risk analysis of municipal water distribution system, J. Infrastruct. Syst., 6 (2000) 118–122.
  31. J.J. McCarthy, Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2001.
  32. G.F. White, Natural Hazards, Local, National, Global, Oxford University Press, Oxford, UK, 1974.
  33. C. Vogel, Vulnerability and global environmental change, LUCC Newsl., 3 (1998) 15–19.
  34. S.L. Cutter, B.J. Boruff, W.L. Shirley, Social vulnerability to environmental hazards, Soc. Sci. Q., 84 (2003) 242–261.
  35. R.A. Davidson, H.C. Shah, An Urban Earthquake Disaster Risk Index, Stanford University, Stanford, CA, 1997.
  36. R. Turvey, Vulnerability assessment of developing countries: the case of small island developing states, Dev. Policy Rev., 25 (2007) 243–264.
  37. B.C. Ezell, Infrastructure vulnerability assessment model (I-VAM), Risk Anal., 27 (2007) 571–583.
  38. R. Murray, R. Janke, J. Uber, The threat ensemble vulnerability assessment (TEVA) program for drinking water distribution system security, World Water Environ. Resour. Congress, (2004) 20–24, doi: 10.1061/40737(2004)482.
  39. J. Pinto, H. Varum, I. Bentes, J. Agarwal, A theory of vulnerability of water pipe network (TVWPN), Water Resour. Manage., 24 (2010) 4237–4254.
  40. M. Moderl, M. Kleidorfer, R. Sitzenfrei, W. Rauch, Identifying weak points of urban drainage systems by means of VulNetUD, Water Sci. Technol., 60 (2009) 2507–2513.
  41. B. Poulter, J.L. Goodall, P.N. Halpin, Applications of network analysis for adaptive management of artificial drainage systems in landscapes vulnerable to sea-level rise, J. Hydrol., 357 (2008) 207–217.
  42. M. Moderl, R. Sitzenfrei, J. Lammel, M. Apperl, M. Kleidorfer, W. Rauch, Development of an urban drainage safety plan concept based on spatial risk assessment, Struct. Infrastruct. Eng., 11 (2015) 918–928.
  43. E. Friedrich, D. Kretzinger, Vulnerability of wastewater infrastructure of coastal cities to sea-level rise: a South African case study, Water SA, 38 (2012) 755–764.
  44. M. Kleidorfer, M. Moderl, R. Sitzenfrei, C. Urich, W. Rauch, A case-independent approach on the impact of climate change effects on combined sewer system performance, Water Sci. Technol., 60 (2009)1555–1564.
  45. R. Sitzenfrei, M. Mair, M. Moderl, W. Rauch, Cascade vulnerability for risk analysis of water infrastructure, Water Sci. Technol., 64 (2011) 1885–1891.
  46. M. Mair, R. Sitzenfrei, M. Kleidorfer, M. Moderl, W. Rauch, GIS-based applications of sensitivity analysis for sewer models, Water Sci. Technol., 65 (2012) 1215–1222.
  47. Q. Hou, Study on Vulnerability Assessment and Emergency Measures of Storm Sewer System; Qingdao Technological University, Qingdao, China, 2014.
  48. S.N. Mugume, D.E. Gomez, G. Fu, R. Farmani, D. Butler, A global analysis approach for investigating structural resilience in urban drainage systems, Water Res., 81 (2015) 15–26.
  49. L. Hao, L. Cuimei, Vulnerability assessment of urban storm sewer systems, J. Shenzhen Univ. Sci. Eng., 6 (2014) 006.
  50. Y. Seo, Y.H. Seo, Y.O. Kim, Behavior of a fully-looped drainage network and the corresponding dendritic networks, Water, 7 (2015) 1291–1305.
  51. Z. Ji, General hydrodynamic model for sewer/channel network systems, J. Hydraul. Eng., 124 (1998) 307–315.
  52. L. Feng, Study on the Hydrodynamic and Wastewater Quality Transformation Model in Urban Sewer Networks, Dalian University of Technology, Dalian, China, 2009.
  53. G. Li, R.G.S. Matthew, New approach for optimization of an urban drainage system, J. Environ. Eng., 116 (1990) 927–944.
  54. S. Antonietta, R. Luca, B.L. Daniele, B. Luigi, Centrality metrics for water distribution networks, EPiC Ser. Eng., 3 (2018) 1979–1988.