References
- W.V. Riel, E.V. Bueren, J. Langeveld, P. Herder, Decision-making
for sewer asset management: theory and practice, Urban Water
J., 13 (2017) 57–68.
- J. Ellis, B. Chocat, S. Fujita, J. Marsalek, W. Rauch, Urban
drainage: a multilingual glossary, Water Intell. Online, 5 (2015) 528.
- J.P. Rodrigue, C. Comtois, B. Slack, The Geography of Transport
Systems, Routledge, New York, NY, USA, 2013.
- T. Laakso, S. Ahopelto, T. Lampola, T. Kokkonen, R. Vahala,
Estimating water and wastewater pipe failure consequences
and the most detrimental failure modes, Water Sci. Technol.
Water Supply, 18 (2018) 901–909.
- E.T. Mustafa, B.T. Goksen, C. Tulin, A. Ersin, Feasible sanitary
sewer network generation using graph theory, Adv. Civ. Eng.,
2019 (2019) 1–15.
- A. Bavelas, Communication patterns in task-oriented groups,
J. Acoust. Soc. Am., 22 (1950) 725–730.
- A. Shimbel, Structural parameters of communication networks,
Bull. Math. Biophys., 15 (1953) 501–507.
- L. Katz, A new status index derived from sociometric analysis,
Psychometrika, 18 (1953) 39–43.
- L.C. Freeman, Centrality in social networks conceptual
clarification, Soc. Networks, 1 (1978) 215–239.
- K. Stephenson, M. Zelen, Rethinking centrality: methods and
examples, Soc. Networks, 11 (1989) 1–37.
- L.C. Freeman, S.P. Borgatti, D.R. White, Centrality in valued
graphs: a measure of betweenness based on network flow, Soc.
Networks, 13 (1991) 141–154.
- D.R. White, S.P. Borgatti, Betweenness centrality measures for
directed graphs, Soc. Networks, 16 (1994) 335–346.
- M.G. Everett, S.P. Borgatti, The centrality of groups and classes,
J. Math. Sociol, 23 (1999) 181–201.
- E. Estrada, J.A. Rodriguez-Velazquez, Subgraph centrality in
complex networks, Phys. Rev., 71 (2005) 056103 1–9.
- J.A. Rodriguez, E. Estrada, A. Gutierrez, Functional centrality in
graphs, Linear Multilinear Algebra, 55 (2006) 293–302.
- P. Bonacich, Some unique properties of eigenvector centrality,
Soc. Networks, 29 (2007) 555–564.
- T. Opsahl, F. Agneessens, J. Skvoretz, Node centrality in
weighted networks, Generalizing degree and shortest paths,
Soc. Networks, 32 (2010) 245–251.
- K.E. Joyce, P.J. Laurienti, J.H. Burdette, S. Hayasaka, A new
measure of centrality for brain networks, PLoS One, 5 (2010) 1–13.
- M. Kitsak, L.K. Gallos, S. Havlin, F. Liljeros, Identification of
influential spreaders in complex networks, Nat. Phys., 6 (2010)
888–893.
- A. Zeng, C.J. Zhang, Ranking spreaders by decomposing
complex networks, Phys. Lett. A, 377 (2013) 1031–1035.
- J. Bae, S. Kim, Identifying and ranking influential spreaders
in complex networks by neighborhood coreness, Physica A,
395 (2014) 549–559.
- Y. Liu, M. Tang, T. Zhou, Y. Do, Identify influential spreaders
in complex networks: the role of neighborhood, Physica A,
452 (2015) 289–298.
- J. Wang, X. Hou, K. Li, Y. Ding, A novel weight neighborhood
centrality algorithm for identifying influential spreaders in
complex networks, Physica A, 475 (2017) 88–105.
- J. Nieminen, On the centrality in a graph, Scand. J. Psychol.,
15 (1974) 322–336.
- A. Bavelas, A mathematical model for group structures, Appl.
Anthropol., 7 (1948) 16–30.
- H.M. Fussel, R.J. Klein, Climate change vulnerability
assessments: an evolution of conceptual thinking, Clim.
Change, 75 (2006) 301–329.
- P. Timmerman, Vulnerability, Resilience and the Collapse of
Society: A Review of Models and Possible Climatic Applications,
Institute for Environmental Studies, University of Toronto,
Toronto, ON, Canada, 1981.
- H. Li, P. Zhang, Y. Cheng, Concepts and assessment methods of
vulnerability, Prog. Geogr., 27 (2008) 18–25.
- M.J. Metzger, R. Leemans, D. Schroter, A multidisciplinary
multi-scale framework for assessing vulnerabilities to global
change, Int. J. Appl. Earth Obs. Geoinf., 7 (2005) 253–267.
- B.C. Ezell, J.V. Farr, I. Wiese, Infrastructure risk analysis of
municipal water distribution system, J. Infrastruct. Syst.,
6 (2000) 118–122.
- J.J. McCarthy, Climate Change 2001: Impacts, Adaptation, and
Vulnerability: Contribution of Working Group II to the Third
Assessment Report of the Intergovernmental Panel on Climate
Change, Cambridge University Press, Cambridge, UK, 2001.
- G.F. White, Natural Hazards, Local, National, Global, Oxford
University Press, Oxford, UK, 1974.
- C. Vogel, Vulnerability and global environmental change,
LUCC Newsl., 3 (1998) 15–19.
- S.L. Cutter, B.J. Boruff, W.L. Shirley, Social vulnerability to
environmental hazards, Soc. Sci. Q., 84 (2003) 242–261.
- R.A. Davidson, H.C. Shah, An Urban Earthquake Disaster Risk
Index, Stanford University, Stanford, CA, 1997.
- R. Turvey, Vulnerability assessment of developing countries:
the case of small island developing states, Dev. Policy Rev.,
25 (2007) 243–264.
- B.C. Ezell, Infrastructure vulnerability assessment model
(I-VAM), Risk Anal., 27 (2007) 571–583.
- R. Murray, R. Janke, J. Uber, The threat ensemble vulnerability
assessment (TEVA) program for drinking water distribution
system security, World Water Environ. Resour. Congress, (2004)
20–24, doi: 10.1061/40737(2004)482.
- J. Pinto, H. Varum, I. Bentes, J. Agarwal, A theory of vulnerability
of water pipe network (TVWPN), Water Resour. Manage.,
24 (2010) 4237–4254.
- M. Moderl, M. Kleidorfer, R. Sitzenfrei, W. Rauch, Identifying
weak points of urban drainage systems by means of VulNetUD,
Water Sci. Technol., 60 (2009) 2507–2513.
- B. Poulter, J.L. Goodall, P.N. Halpin, Applications of network
analysis for adaptive management of artificial drainage systems
in landscapes vulnerable to sea-level rise, J. Hydrol., 357 (2008)
207–217.
- M. Moderl, R. Sitzenfrei, J. Lammel, M. Apperl, M. Kleidorfer,
W. Rauch, Development of an urban drainage safety plan
concept based on spatial risk assessment, Struct. Infrastruct.
Eng., 11 (2015) 918–928.
- E. Friedrich, D. Kretzinger, Vulnerability of wastewater
infrastructure of coastal cities to sea-level rise: a South African
case study, Water SA, 38 (2012) 755–764.
- M. Kleidorfer, M. Moderl, R. Sitzenfrei, C. Urich, W. Rauch,
A case-independent approach on the impact of climate change
effects on combined sewer system performance, Water Sci.
Technol., 60 (2009)1555–1564.
- R. Sitzenfrei, M. Mair, M. Moderl, W. Rauch, Cascade
vulnerability for risk analysis of water infrastructure, Water Sci.
Technol., 64 (2011) 1885–1891.
- M. Mair, R. Sitzenfrei, M. Kleidorfer, M. Moderl, W. Rauch,
GIS-based applications of sensitivity analysis for sewer models,
Water Sci. Technol., 65 (2012) 1215–1222.
- Q. Hou, Study on Vulnerability Assessment and Emergency
Measures of Storm Sewer System; Qingdao Technological
University, Qingdao, China, 2014.
- S.N. Mugume, D.E. Gomez, G. Fu, R. Farmani, D. Butler,
A global analysis approach for investigating structural resilience
in urban drainage systems, Water Res., 81 (2015) 15–26.
- L. Hao, L. Cuimei, Vulnerability assessment of urban storm
sewer systems, J. Shenzhen Univ. Sci. Eng., 6 (2014) 006.
- Y. Seo, Y.H. Seo, Y.O. Kim, Behavior of a fully-looped drainage
network and the corresponding dendritic networks, Water,
7 (2015) 1291–1305.
- Z. Ji, General hydrodynamic model for sewer/channel network
systems, J. Hydraul. Eng., 124 (1998) 307–315.
- L. Feng, Study on the Hydrodynamic and Wastewater Quality
Transformation Model in Urban Sewer Networks, Dalian
University of Technology, Dalian, China, 2009.
- G. Li, R.G.S. Matthew, New approach for optimization of an
urban drainage system, J. Environ. Eng., 116 (1990) 927–944.
- S. Antonietta, R. Luca, B.L. Daniele, B. Luigi, Centrality metrics
for water distribution networks, EPiC Ser. Eng., 3 (2018)
1979–1988.