References

  1. AWWA, Cement-Mortar Lining for Ductile-Iron Pipe and Fittings for Water, American Water Works Association, 1996.
  2. L. Qiu, X. Zuo, Y. Tang, G. Yin, H. Tang, Electrochemical study on corrosion process of cement-mortar-lined ductile cast iron pipe under water supply, J. Nanjing Univ. Sci. Technol., 41 (2017) 217–225.
  3. H. Guo, Research on Electrochemical Corrosion Mechanisms of Water Supply Pipes, Tianjin University, Tianjin City, 2016.
  4. Y. Song, Y. Tian, X. Zhao, H. Guo, H. Zhang, Corrosion process of ductile iron with cement mortar linings as coatings in reclaimed water, Int. J. Electrochem. Sci., (2016) 7031–7047.
  5. J. Gong, M.L. Stephens, N.S. Arbon, A.C. Zecchin, M.F. Lambert, A.R. Simpson, On-site non-invasive condition assessment for cement mortar-lined metallic pipelines by time-domain fluid transient analysis, Struct. Health Monit., 14 (2015) 426–438.
  6. J. Sulikowski, J. Kozubal, The durability of a concrete sewer pipeline under deterioration by sulphate and chloride corrosion, Procedia Eng., 153 (2016) 698–705.
  7. M. Zhang, J. Chen, Y. Lv, D. Wang, J. Ye, Study on the expansion of concrete under attack of sulfate and sulfate–chloride ions, Constr. Build. Mater., 39 (2013) 26–32.
  8. R.B. Figueira, A. Sadovski, A.P. Melo, E.V. Pereira, Chloride threshold value to initiate reinforcement corrosion in simulated concrete pore solutions: the influence of surface finishing and pH, Constr. Build. Mater., 141 (2017) 183–200.
  9. U. Angst, B. Elsener, C.K. Larsen, Ø. Vennesland, Critical chloride content in reinforced concrete – a review, Cem. Concr. Res., 39 (2009) 1122–1138.
  10. S. Mundra, M. Criado, S.A. Bernal, J.L. Provis, Chlorideinduced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes, Cem. Concr. Res., 100 (2017) 385–397.
  11. S. Arzola-Peralta, J. Genescá Llongueras, M. Palomar-Pardavé, Study of the electrochemical behaviour of a carbon steel electrode in sodium sulfate aqueous solutions using electrochemical impedance spectroscopy, J. Solid State Electrochem., 7(2003) 283–288.
  12. L.J. Yang, Y.Z. Xu, Y.S. Zhu, L. Liu, X.N. Wang, Y. Huang, Evaluation of interaction effect of sulfate and chloride ions on reinforcements in simulated marine environment using electrochemical methods, Int. J. Electrochem. Sci., 11 (2016) 6943–6958.
  13. S.G. Dong, R.G. Du, Y.B. Gao, Y. Liang, Z.C. Guan, Effect of sulfate on corrosion behavior of reinforcing steel in simulated concrete pore solutions, ECS Trans.., 75 (2017) 17–23.
  14. O.S.B. Al-Amoudi, Attack on plain and blended cements exposed to aggressive sulfate environments, Cem. Concr. Compos., 24 (2002) 305–316.
  15. B. Pradhan, Corrosion behaviour of steel reinforcement in concrete exposed to composite chloride–sulfate environment, Constr. Build. Mater., 72 (2014) 398–410.
  16. F. Shaheen, B. Pradhan, Effect of chloride and conjoint chloridesulfate ions on corrosion of reinforcing steel in electrolytic concrete powder solution (ECPS), Constr. Build. Mater., 101 (2015) 99–112.
  17. M. Zhao, M. Liu, G. Song, A. Atrens, Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41, Corros. Sci., 50 (2008) 3168–3178.
  18. A.T. Horne, I.G. Richardson, R.M.D. Brydson, Quantitative analysis of the microstructure of interfaces in steel reinforced concrete, Cem. Concr. Res., 37 (2007) 1613–1623.
  19. J. Ming, J. Shi, W. Sun, Effect of mill scale on the long-term corrosion resistance of a low-alloy reinforcing steel in concrete subjected to chloride solution, Constr. Build. Mater., 163 (2018) 508–517.
  20. C. Alonso, C. Andrade, M. Castellote, P. Castro, Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar, Cem. Concr. Res., 30 (2000) 1047–1055.
  21. J.O. Rivera-Corral, G. Fajardo, G. Arliguie, R. Orozco-Cruz, F. Deby, P. Valdez, Corrosion behavior of steel reinforcement bars embedded in concrete exposed to chlorides: effect of surface finish, Constr. Build. Mater., 147 (2017) 815–826.
  22. P. Refait, A.M. Grolleau, M. Jeannin, E. Francois, R. Sabot, Localized corrosion of carbon steel in marine media: galvaniccoupling and heterogeneity of the corrosion product layer, Corros. Sci., 111 (2016) 7031–7047.
  23. G. Liu, Y. Zhang, Z. Ni, R. Huang, Corrosion behavior of steel submitted to chloride and sulphate ions in simulated concrete pore solution, Constr. Build. Mater., 115 (2016) 1–5.
  24. X. Song, J. Wei, T. He, G. Li, Corrosion behavior of steel reinforcement embedded in cement mortar with surface treatment, J. Chin. Ceram. Soc., 37 (2009) 637–641.
  25. W.A. Badawy, R.M. El-Sherif, H. Shehata, Electrochemical behavior of aluminum bronze in sulfate-chloride media, J. Appl. Electrochem., 37 (2007) 1099–1106.
  26. Y.M. Kolotyrkin, Effects of anions on the dissolution kinetics of metals, J. Electrochem. Soc., 108 (1961) 209–216.
  27. Y. Lin, D. Yang, Corrosion and Corrosion Control Principle, China Petrochemical Press, Beijing, 2007.
  28. I. Oliveira, S.H.P. Cavalaro, A. Aguado, New kinetic model to quantify the internal sulfate attack in concrete, Cem. Concr. Res., 43 (2013) 95–104.
  29. Y. Yang, Y. Deng, Mechanical properties of hybrid short fibers reinforced oil well cement by polyester fiber and calcium carbonate whisker, Constr. Build. Mater., 182 (2018) 258–272.
  30. X. Shi, N. Xie, K. Fortune, J. Gong, Durability of steel reinforced concrete in chloride environments: an overview, Constr. Build. Mater., 30 (2012) 125–138.
  31. X. Zuo, K. Jiang, Y. Feng, Y. Tang, X. Sun, Analysis on depassivation process and chloride ion threshold of passive film on surface of ductile iron in simulated pore solution, J. Southeast Univ., 47 (2017) 392–396.
  32. H. Gerengi, Y. Kocak, A. Jazdzewska, M. Kurtay, H. Durgun, Electrochemical investigations on the corrosion behaviour of reinforcing steel in diatomite- and zeolite-containing concrete exposed to sulphuric acid, Constr. Build. Mater., 49 (2013) 471–477.
  33. R. Vedalakshmi, N. Palaniswamy, Analysis of the electrochemical phenomenon at the rebar–concrete interface using the electrochemical impedance spectroscopic technique, Mag. Concr. Res., 62 (2010) 177–189.
  34. Y. Zou, J. Wang, Y.Y. Zheng, Electrochemical techniques for determining corrosion rate of rusted steel in seawater, Corros. Sci., 53 (2011) 208–216.
  35. W. Morris, A. Vico, M. Vazquez, Chloride induced corrosion of reinforcing steel evaluated by concrete resistivity measurements, Electrochim. Acta, 49 (2004) 4447–4453.
  36. M. Serdar, L.V. Žulj, D. Bjegović, Long-term corrosion behaviour of stainless reinforcing steel in mortar exposed to chloride environment, Corros. Sci., 69 (2013) 149–157.
  37. D.A. Koleva, J.H.W. de Wit, K. van Breugel, L.P. Veleva, E. van Westing, O. Copuroglu, A.L.A. Fraaij, Correlation of microstructure, electrical properties and electrochemical phenomena in reinforced mortar. Breakdown to multi-phase interface structures. Part II: Pore network, electrical properties and electrochemical response, Mater. Charact., 59 (2008) 801–815.
  38. M.O.G.P. Bragança, K.F. Portella, M.M. Bonato, C.E.B. Marino, Electrochemical impedance behavior of mortar subjected to a sulfate environment – a comparison with chloride exposure models, Constr. Build. Mater., 68 (2014) 650–658.
  39. M.K. Desantis, S. Triantafyllidou, M. Schock, D.A. Lytle, Mineralogical evidence of galvanic corrosion in drinking water lead pipe joints, Environ. Sci. Technol., 52 (2018) 3365–3374.