References

  1. R. Lapasin, L. De Lorenzi, S. Pricl, G. Torriano, Flow properties of hydroxypropyl guar gum and its long-chain hydrophobic derivatives, Carbohydr. Polym., 28 (1995) 195–202.
  2. J. Reuben, Description of heteropolysaccharide ethers: hydroxypropyl guar and carboxymethyl guar, Macromolecules, 18 (1985) 2035–2037.
  3. T.T. Reddy, S. Tammishetti, Free radical degradation of guar gum, Polym. Degrad. Stab., 86 (2004) 455–459.
  4. L.R.S. Moreira, E.X.F. Filho, An overview of mannan structure and mannan-degrading enzyme systems, Appl. Microbiol. Biotechnol., 79 (2008) 165.
  5. Y.C. Zhao, J.P. He, X.X. Han, X.L. Tian, M.Y. Deng, W.P. Chen, B. Jiang, Modification of hydroxypropyl guar gum with ethanolamine, Carbohydr. Polym., 90 (2012) 988–992.
  6. K. Yu, D. Wong, J. Parasrampuria, D. Friend, Guar gum, Anal. Profiles Drug Subst. Excipients, 24 (1996) 243–276.
  7. J.J. Patel, M. Karve, N.K. Patel, Guar gum: a versatile material for pharmaceutical industries, Int. J. Pharm. Pharm. Sci., 6 (2014) 13–19.
  8. N. Thombare, U. Jha, S. Mishra, M.Z. Siddiqui, Guar gum as a promising starting material for diverse applications: a review, Int. J. Biol. Macromol., 88 (2016) 361–372.
  9. S. Enami, Y. Sakamoto, A.J. Colussi, Fenton chemistry at aqueous interfaces, Proc. Natl. Acad. Sci. U.S.A., 111 (2014) 623–628.
  10. X.-J. Yang, X.-M. Xu, J. Xu, Y.-F. Han, Iron oxychloride (FeOCL): an efficient fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants, J. Am. Chem. Soc., 135 (2013) 16058–16061.
  11. X.Y. Zhang, Y.B. Ding, H.Q. Tang, X.Y. Han, L.H. Zhu, N. Wang, Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst: efficiency, stability and mechanism, Chem. Eng. J., 236 (2014) 251–262.
  12. J. Criquet, N.K.V. Leitner, Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis, Chemosphere, 77 (2009) 194–200.
  13. P. Shukla, H.Q. Sun, S.B. Wang, H. Ming Ang, M.O. Tadé, Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment, Catal. Today, 175 (2011) 380–385.
  14. X.N. Li, Z.H. Wang, B. Zhang, A.I. Rykov, M.A. Ahmed, J.H. Wang, FexCo3–xO4 nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate, Appl. Catal., B, 181 (2016) 788–799.
  15. A. Rastogi, S.R. Al-Abed, D.D. Dionysiou, Sulfate radicalbased ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems, Appl. Catal., B, 85 (2009) 171–179.
  16. D. Shi, X. Zhang, J. Wang, J. Fan, Highly reactive and stable nanoscale zero-valent iron prepared within vesicles and its high-performance removal of water pollutants, Appl. Catal., B, 221 (2018) 610–617.
  17. S.H. Joo, A.J. Feitz, T.D. Waite, Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron, Environ. Sci. Technol., 38 (2004) 2242–2247.
  18. L.Y. Xu, L. Sun, J. Feng, L.L. Qi, I. Muhammad, J. Maher, X.Y. Cheng, W.M. Song, Nanocasting synthesis of an iron nitride-ordered mesopore carbon composite as a novel electrode material for supercapacitors, RSC Adv., 7 (2017) 44619–44625.
  19. S. Bao, S.-H. Luo, S.-X. Yan, Z.-Y. Wang, Q. Wang, J. Feng, Y.-L. Wang, T.-F. Yi, Nano-sized MoO2 spheres interspersed three-dimensional porous carbon composite as advanced anode for reversible sodium/potassium ion storage, Electrochim. Acta, 307 (2019) 293–301.
  20. M. Zhang, X.Q. Chen, H. Zhou, M. Murugananthan, Y.R. Zhang, Degradation of p-nitrophenol by heat and metal ions co-activated persulfate, Chem. Eng. J., 264 (2015) 39–47.
  21. X.-R. Xu, X.-Z. Li, Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion, Sep. Purif. Technol., 72 (2010) 105–111.
  22. C.J. Liang, M.-C. Lai, Trichloroethylene degradation by zero valent iron activated persulfate oxidation, Environ. Eng. Sci., 25 (2008) 1071–1078.
  23. C.J. Liang, Y.-Y. Guo, Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate, Environ. Sci. Technol., 44 (2010) 8203–8208.
  24. I. Hussain, Y.Q. Zhang, S.B. Huang, X.Z. Du, Degradation of p-chloroaniline by persulfate activated with zero-valent iron, Chem. Eng. J., 203 (2012) 269–276.
  25. S.-Y. Oh, S.-G. Kang, P.C. Chiu, Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron, Sci. Total Environ., 408 (2010) 3464–3468.
  26. X.H. Xu, Q.F. Ye, T.M. Tang, D.H. Wang, Hg0 oxidative absorption by K2S2O8 solution catalyzed by Ag+ and Cu2+, J. Hazard. Mater., 158 (2008) 410–416.
  27. C.S. Liu, K. Shih, C.X. Sun, F. Wang, Oxidative degradation of propachlor by ferrous and copper ion activated persulfate, Sci. Total Environ., 416 (2012) 507–512.
  28. N. Wang, T. Zheng, G.S. Zhang, P. Wang, A review on Fentonlike processes for organic wastewater treatment, J. Environ. Chem. Eng., 4 (2016) 762–787.
  29. S.W. Wang, Z.W. Li, Q.L. Yu, Kinetic degradation of guar gum in oilfield wastewater by photo-Fenton process, Water Sci. Technol., 75 (2016) 11–19.
  30. E.H. Li, X.Y. Jiao, C.G. Wang, Y.H. Wang, W.S. Wang, G. Liu, D.N. Li, X.J. Meng, B. Li, Degradation kinetics and stability of anthocyanins from blueberry, Food Sci., 39 (2018) 1–7.
  31. L. Chen, X.Y. Huang, M. Tang, D. Zhou, F. Wu, Rapid dephosphorylation of glyphosate by Cu-catalyzed sulfite oxidation involving sulfate and hydroxyl radicals, Environ. Chem. Lett., 16 (2018) 1507–1511.
  32. M. Netopilík, M. Bohdanecký, Ubbelohde viscometer modified for foaming solutions of water soluble polymers, Eur. Polym. J., 31 (1995) 289–290.
  33. Y. Tang, H. Ren, P.W. Yang, H. Li, J. Zhang, C.T. Qu, G. Chen, Treatment of fracturing fluid waste by Fenton reaction using transition metal complexes catalyzes oxidation of hydroxypropyl guar gum at high pH, Environ. Chem. Lett., 17 (2019) 559–564.
  34. Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, L. Zuo, Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water, Bioresour. Technol., 100 (2009) 4139–4146.
  35. Y. Cheng, K.M. Brown, R.K. Prud’homme, Characterization and intermolecular interactions of hydroxypropyl guar solutions, Biomacromolecules, 3 (2002) 456–461.
  36. Z.C. Zhang, Combined treatment of hydroxypropyl guar gum in oilfield fracturing wastewater by coagulation and the UV/H2O2/ferrioxalate complexes process, Water Sci. Technol., 77 (2018) 565–575.
  37. W. Yang, W. Yang, L. Kong, A.L. Song, X.J. Qin, G.J. Shao, Phosphorus-doped 3D hierarchical porous carbon for highperformance supercapacitors: a balanced strategy for pore structure and chemical composition, Carbon, 127 (2018) 557–567.
  38. Q.H. Du, L. Su, L.Y. Hou, G. Sun, M.Y. Feng, X.C. Yin, Z.P. Ma, G.J. Shao, W.M. Gao, Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor, J. Alloys Compd., 740 (2018) 1051–1059.
  39. F. Zhu, L.W. Li, S.Y. Ma, Z.F. Shang, Effect factors, kinetics and thermodynamics of remediation in the chromium contaminated soils by nanoscale zero valent Fe/Cu bimetallic particles, Chem. Eng. J., 302 (2016) 663–669.
  40. C. Rodriguez-Navarro, L. Linares-Fernandez, E. Doehne, E. Sebastian, Effects of ferrocyanide ions on NaCl crystallization in porous stone, J. Cryst. Growth, 243 (2002) 503–516.