References
- A.A. Inyinbor, F.A. Adekola, G.A. Olatunji, Kinetics, isotherms
and thermodynamic modeling of liquid phase adsorption of
Rhodamine B dye onto Raphia hookerie fruit epicarp, Water Res.,
15 (2016) 14–27.
- Z.U. Ahmad, L.G. Yao, J. Wang, D.D. Gang, F. Islam, Q.Y. Lian,
M.E. Zappi, Neodymium embedded ordered mesoporous
carbon (OMC) for enhanced adsorption of sunset yellow:
characterizations, adsorption study and adsorption mechanism,
Chem. Eng. J., 359 (2019) 814–826.
- K. Gayathri, N. Palanisamy, Methylene blue adsorption onto
an eco-friendly modified polyacrylamide/graphite composites:
investigation of kinetics, equilibrium, and thermodynamic
studies, Sep. Sci. Technol., 55 (2020) 266–277.
- Z. Harrache, M. Abbas, T. Aksil, M. Trari, Thermodynamic and
kinetics studies on adsorption of Indigo Carmine from aqueous
solution by activated carbon, Rev. Microchem., 144 (2019)
180–189.
- A. Kumar, H.M. Jena, Removal of methylene blue and phenol
onto prepared activated carbon from Fox nutshell by chemical
activation in batch and fixed-bed column, J. Cleaner Prod.,
137 (2016) 1246–1259.
- M.N. Mahamad, M.A.A. Zaini, Z.A. Zakaria, Preparation and
characterization of activated carbon from pineapple waste
biomass for dye removal, Int. Biodeterior. Biodegrad., 102
(2015) 274–280.
- M.J.P. Brito, C.M. Veloso, L.S. Santos, R.C.F. Bonomo, R. da
Costa Ilhéu Fontan, Adsorption of the textile dye Dianix®
royal blue CC onto carbons obtained from yellow mombin fruit
stones and activated with KOH and H3PO4: kinetics, adsorption
equilibrium and thermodynamic studies, Powder Technol.,
339 (2018) 334–343.
- S.V. Lacerda, J.B. López-Sotelo, A. Correa-Guimarães,
S. Hernández-Navarro, M. Sánchez-Báscones, L.M. Navas-Gracia, P. Martín-Ramos, J. Martín-Gil, Rhodamine B removal
with activated carbons obtained from lignocellulosic waste,
J. Environ. Manage., 155 (2015) 67–76.
- C. Xu, W.-Z. Sun, X.-L. Qin, Y.-X. Jia, S.-T. Yu, M. Xian, Effective
adsorption of phenolic compounds by functional group
modified resins: behavior and mechanism, Sep. Sci. Technol.,
54 (2019) 467–477.
- M.J.P. Brito, C.M. Veloso, R.C.F. Bonomo, R. da Costa Ilhéu
Fontan, L.S. Santos, K.A. Monteiro, Activated carbons
preparation
from yellow mombin fruit stones for lipase
immobilization, Fuel Process. Technol., 156 (2017) 421–428.
- E. Vunain, T. Biswick, Adsorptive removal of methylene blue
from aqueous solution on activated carbon prepared from
Malawian baobab fruit shell wastes: equilibrium, kinetics
and thermodynamic studies, Sep. Sci. Technol., 54 (2018)
27–41.
- S.N. Andrade, C.M. Veloso, R.C.I. Fontan, R.C.F. Bonomo,
L.S. Santos, M.J.P. Brito, G.A. Diniz, Chemical-activated carbon
from coconut (Cocos nucifera) endocarp waste and its application
in the adsorption of β-lactoglobulin protein, Rev. Mex. Ing.
Quím., 17 (2018) 441–453.
- S. Rangabhashiyam, P. Balasubramanian, The potential of
lignocellulosic biomass precursors for biochar production:
performance, mechanism and wastewater application—a
review, Ind. Crops Prod., 128 (2019) 405–423.
- A.B. Azadeh, D.G. Allen, C.Q. Jia, Benefits of microwave
heating method in production of activated carbon, Can. J.
Chem. Eng., 94 (2016) 1262–1268.
- A. Castro-Muñiz, S. Lorenzo-Fierro, A. Martínez-Alonso,
J.M.D. Tascón, V. Fierro, F. Suárez-García, J.I. Paredes, Ordered
mesoporous carbons obtained from low-value coal tar products
for electrochemical energy storage and water remediation,
Fuel Process. Technol., 196 (2019) 106–152.
- R.G. Pereira, C.M. Veloso, N.M. da Silva, L.F. de Sousa,
R.C.F. Bonomo, A.O. de Souza, M.O. da Guarda Souza, R. da
Costa Ilhéu Fontan, Preparation of activated carbons from
cocoa shells and siriguela seeds using H3PO4 and ZnCl2 as
activating agents for BSA and α-lactalbumin adsorption, Fuel
Process. Technol., 126 (2014) 476–486.
- P. González-García, Activated carbon from lignocellulosics
precursors: a review of the synthesis methods, characterization
techniques and applications, Renewable Sustainable Energy
Rev., 82 (2018) 1393–1414.
- J.N. da Cruz, D.C. Pimenta, R.L. de Melo, J.R.O. Nascimento,
Isolation and biochemical characterisation of angiotensinconverting
enzyme inhibitory peptides derived from the
enzymatic hydrolysis of cupuassu seed protein isolate, J. Funct.
Foods, 27 (2016) 104–114.
- N.F. Cardoso, E.C. Lima, I.S. Pinto, C.V. Amavisca, B. Royer,
R.B. Pinto, W.S. Alencar, S.F.P. Pereira, Application of cupuassu
shell as biosorbent for the removal of textile dyes from aqueous
solution, J. Environ. Manage., 92 (2011) 1237–1247.
- M.P.F. Santos, M.J.P. Brito, E.C.S. Junior, R.C.F. Bonomo,
C.M. Veloso, Pepsin immobilization on biochar by adsorption
and covalent binding, and its application for hydrolysis
of bovine casein, J. Chem. Technol. Biotechnol., 94 (2019)
1982–1990.
- P.J. van Soest, J.B. Robertson, B.A. Lewis, Methods for dietary
fiber, neutral detergent fiber, and nonstarch polysaccharides in
relation to animal nutrition, J. Dairy Sci., 74 (1991) 3583–3597.
- AOAC, AOAC Official Methods of Analysis, Vol. 16, Association
of Official Analytical Chemistry, Arlington, 1995.
- J.R. Regalbuto, J. Robles, The Engineering of Pt/Carbon Catalyst
Preparation University of Illinois, Catalysis Laboratory,
University of Illinois at Chicago, Chicago, 2004.
- P.D. Muley, C. Henkel, K.K. Abdollahi, C. Marculescu,
D. Boldor, A critical comparison of pyrolysis of cellulose, lignin,
and pine sawdust using an induction heating reactor, Energy
Convers. Manage., 117 (2016) 273–280.
- G. Selvaraju, N. Kartini Abu Bakar, Production of a new
industrially viable green-activated carbon from Artocarpus
integer fruit processing waste and evaluation of its chemical,
morphological and adsorption properties, J. Cleaner Prod.,
141 (2017) 989–999.
- V. Fierro, V. Torné-Fernández, A. Celzard, Kraft lignin as a
precursor for microporous activated carbons prepared by
impregnation with ortho-phosphoric acid: synthesis and textural
characterization, Microporous Mesoporous Mater., 92 (2006)
243–250.
- W.C. Lim, C. Srinivasakannan, N. Balasubramanian, Activation
of palm shells by phosphoric acid impregnation for high
yielding activated carbon, J. Anal. Appl. Pyrolysis, 88 (2010)
181–186.
- M.A. Lillo-Ródenas, J. Juan-Juan, D. Cazorla-Amorós,
A. Linares-Solano, About reactions occurring during chemical
activation with hydroxides, Carbon, 42 (2004) 1371–1375.
- B. Acevedo, C. Barriocanal, Texture and surface chemistry
of activated carbons obtained from tyre wastes, Fuel Process.
Technol., 134 (2015) 275–283.
- Y.Y. Sun, H. Li, G.C. Li, B.Y. Gao, Q.Y. Yue, X.B. Li,
Characterization and ciprofloxacin adsorption properties of
activated carbons prepared from biomass wastes by H3PO4
activation, Bioresour. Technol., 217 (2016) 239–244.
- C.P. da Silva, A.V. dos Santos, A.S. Oliveira, M.O. da Guarda
Souza, Synthesis of composites and study of the thermal
behavior of sugarcane bagasse/iron nitrate mixtures in different
proportions, J. Therm. Anal. Calorim., 131 (2017) 611–620.
- Y.P. Guo, D.A. Rockstraw, Physicochemical properties of
carbons prepared from pecan shell by phosphoric acid
activation, Bioresour. Technol., 98 (2007) 1513–1521.
- F. Marrakchi, M. Auta, W.A. Khanday, B.H. Hameed, High surface-area and nitrogen-rich mesoporous carbon material
from fishery waste for effective adsorption of methylene blue,
Powder Technol., 321 (2017) 428–434.
- Z. Movasaghi, B. Yan, C. Niu, Adsorption of ciprofloxacin
from water by pretreated oat hulls: equilibrium, kinetic, and
thermodynamic studies, Ind. Crops Prod., 127 (2019) 237–250.
- M.A. Nahil, P.T. Williams, Pore characteristics of activated
carbons from the phosphoric acid chemical activation of cotton
stalks, Biomass Bioenergy, 37 (2012) 142–149.
- H. Marsh, F. Rodríguez-Reinoso, Activation Processes
(Chemical), Elsevier B.V., Amsterdam, Holland, 2006, p. 322.
- M. Jagtoyen, F. Derbyshire, Activated carbons from yellow
poplar and white oak by H3PO4 activation, Carbon, 36 (1998)
1085–1097.
- L.R. Radovic, F. Rodriguez-Reinoso, Chemistry and Physics of
Carbon, Marcel Dekker, New York, 1997.
- C.R. Correa, T. Otto, A. Kruse, Influence of the biomass
components on the pore formation of activated carbon, Biomass
Bioenergy, 97 (2017) 53–64.
- A. Elmouwahidi, E. Bailón-García, A.F. Pérez-Cadenas,
F.J. Maldonado-Hódar, F. Carrasco-Marín, Activated carbons
from KOH and H3PO4-activation of olive residues and its
application as supercapacitor electrodes, Electrochim. Acta,
229 (2017) 219–228.
- N. Rambabu, B.V.S.K. Rao, V.R. Surisetty, U. Das, A.K. Dalai,
Production, characterization, and evaluation of activated
carbons from de-oiled canola meal for environmental
applications, Ind. Crops Prod., 67 (2015) 572–581.
- S.J. Li, K.H. Han, J.X. Li, M. Li, C.M. Lu, Preparation and
characterization of super activated carbon produced from
gulfweed by KOH activation, Microporous Mesoporous Mater.,
243 (2017) 291–300.
- C.C. Small, Z. Hashisho, A.C. Ulrich, Preparation and
characterization of activated carbon from oil sands coke, Fuel,
92 (2012) 69–76.
- C.H. Xiong, Y.L. Li, G.T. Wang, L. Fang, S.G. Zhou, C.P. Yao,
Q. Chen, X.M. Zheng, D.M. Qi, Y.Q. Fu, Y.F. Zhu, Selective
removal of Hg(II) with polyacrylonitrile-2-amino-1,3,4-
thiadiazole chelating resin: batch and column study, Chem.
Eng. J., 259 (2015) 257–265.
- K.C. Bedin, A.C. Martins, A.L. Cazetta, O. Pezoti, V.C. Almeida,
KOH-activated carbon prepared from sucrose spherical
carbon: adsorption equilibrium, kinetic and thermodynamic
studies for Methylene Blue removal, Chem. Eng. J., 286 (2016)
476–484.
- Q. Zhou, Y.-F. Duan, Y.-G. Hong, C. Zhu, M. She, J. Zhang,
H.-Q. Wei, Experimental and kinetic studies of gas-phase
mercury adsorption by raw and bromine modified activated
carbon, Fuel Process. Technol., 134 (2015) 325–332.
- A. Rahmani-Sani, A. Hosseini-Bandegharaei, S.-H. Hosseini,
K. Kharghani, H. Zarei, A. Rastegar, Kinetic, equilibrium and
thermodynamic studies on sorption of uranium and thorium
from aqueous solutions by a selective impregnated resin
containing carminic acid, J. Hazard. Mater., 286 (2015) 152–163.
- H. Demiral, C. Güngör, Adsorption of copper(II) from aqueous
solutions on activated carbon prepared from grape bagasse,
J. Cleaner Prod., 124 (2016) 103–113.
- P.M. Pimentel, G. González, M.F.A. Melo, D.M.A. Melo,
C.N. Silva Jr., A.L.C. Assunção, Removal of lead ions from
aqueous solution by retorted shale, Sep. Purif. Technol.,
56 (2007) 348–353.
- M.C. Ncibi, B. Mahjoub, M. Seffen, Investigation of the sorption
mechanisms of metal-complexed dye onto Posidonia oceanica (L.)
fibres through kinetic modelling analysis, Bioresour. Technol.,
99 (2008) 5582–5589.
- S.S. Gupta, K.G. Bhattacharyya, Kinetics of adsorption of metal
ions on inorganic materials: a review, Adv. Colloid Interface
Sci., 162 (2011) 39–58.
- W.J. Weber, J. Carrell Morris, Kinetics of adsorption on carbon
from solution, J. Sanitary Eng. Div. ASCE, 89 (1963) 31–60.
- G.E. Boyd, A.W. Adamson, L.S. Myers Jr., The exchange
adsorption of ions from aqueous solution by organic zeolites.
II. Kinetics, J. Am. Chem. Soc., 69 (1947) 2836.
- M. Sarkar, P.K. Acharya, B. Bhattacharya, Modeling the
adsorption kinetics of some priority organic pollutants in water
from diffusion and activation energy parameters, J. Colloid
Interface Sci., 266 (2003) 28–32.
- T.A. Cigu, S. Vasiliu, S. Racovita, C. Lionte, V. Sunel,
M. Popa, C. Cheptea, Adsorption and release studies of new
cephalosporin from chitosan-g-poly(glycidyl methacrylate)
microparticles, Eur. Polym. J., 82 (2016) 131–152.
- D. Mohan, K.P. Singh, V.K. Singh, Trivalent chromium removal
from wastewater using low cost activated carbon derived from
agricultural waste material and activated carbon fabric cloth,
J. Hazard. Mater., 135 (2006) 280–295.
- J.J. João, W.S. Júnior, J.L. Vieira, Use of zeolite synthesized from
coal ashl from Santa Catarina for removal of iron, manganese
and methylene blue dye in water, Rev. Ambient. Agua, 13 (2018)
2224.
- G.E. do Nascimento, N.F. Campos, J.J. da Silva, C.M.B. de
Menezes Barbosa, M.M.M.B. Duarte, Adsorption of anionic
dyes from an aqueous solution by banana peel and green
coconut mesocarp, Desal. Water Treat., 57 (2015) 1–16.
- R. Aravindhan, J.R. Rao, B.U. Nair, Kinetic and equilibrium
studies on biosorption of basic blue dye by green macro algae
Caulerpa scalpelliformis, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 42 (2007) 621–631.
- D. Reichenberg, Properties of ion-exchange resin in relation
to their structure. III. Kinetics of exchange, J. Am. Chem. Soc.,
75 (1953) 589.
- G.M. Maciel, C.G.M. de Souza, C.A.V. de Araújo, E. Bona,
C.W.I. Haminiuk, R. Castoldi, A. Bracht, R.M. Peralta,
Biosorption of herbicide picloram from aqueous solutions by
live and heat-treated biomasses of Ganoderma lucidum (Curtis)
P. Karst and Trametes sp., Chem. Eng. J., 215 (2013) 331–338.
- D.M. Ruthven, Principles of Adsorption and Adsorption
Process, John Wiley & Sons, New York, 1984.
- Ö. Gerçel, Biosorption of a basic dye from aqueous solutions by
Euphorbia rigida, Sep. Sci. Technol., 43 (2008) 192–211.
- N. Ünlü, M. Ersoz, Adsorption characteristics of heavy metal
ions onto a low cost biopolymeric sorbent from aqueous
solutions, J. Hazard. Mater., 136 (2006) 272–280.
- Y.G. Chen, R.Q. Huang, C.M. Zhu, D.B. Wu, Y.H. Sun, Y. He,
W.M. Ye, Adsorptive removal of La(III) from aqueous solutions
with 8-hydroxyquinoline immobilized GMZ bentonite,
J. Radioanal. Nucl. Chem., 299 (2014) 665–674.
- S.D. Khattri, M.K. Singh, Colour removal from synthetic dye
wastewater using a bioadsorbent, Water Air Soil Pollut., 120
(2000) 283–294.
- A.R. Khataee, F. Vafaei, M. Jannatkhah, Biosorption of three
textile dyes from contaminated water by filamentous green
algal Spirogyra sp.: kinetic, isotherm and thermodynamic
studies, Int. Biodeterior. Biodegrad., 83 (2013) 33–40.
- X.Y. Li, D. Han, M.Y. Zhang, B. Li, Z.B. Wang, Z.Q. Gong,
P.K. Liu, Y.K. Zhang, X.H. Yang, Removal of toxic dyes from
aqueous solution using new activated carbon materials
developed from oil sludge waste, 578 (2019) 123505.
- R. Gonzalez-Olmos, M. Iglesias, Thermodynamics and kinetics
of fuel oxygenate adsorption into granular activated carbon,
J. Chem. Eng. Data, 53 (2008) 2556–2561.
- X. Wang, J.M. Pan, W. Guan, J.D. Dai, X.H. Zou, Y.S. Yan,
C.X. Li, W. Hu, Selective removal of 3-chlorophenol from
aqueous solution using surface molecularly imprinted
microspheres, J. Chem. Eng. Data, 56 (2011) 2793–2801.